ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.05134
  4. Cited By
Revisiting One-vs-All Classifiers for Predictive Uncertainty and
  Out-of-Distribution Detection in Neural Networks

Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks

10 July 2020
Shreyas Padhy
Zachary Nado
Jie Jessie Ren
J. Liu
Jasper Snoek
Balaji Lakshminarayanan
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks"

20 / 20 papers shown
Title
DEUCE: Dual-diversity Enhancement and Uncertainty-awareness for Cold-start Active Learning
DEUCE: Dual-diversity Enhancement and Uncertainty-awareness for Cold-start Active Learning
Jiaxin Guo
Cheng Chen
Shuzhen Li
Tianze Zhang
196
1
0
01 Feb 2025
Transitional Uncertainty with Layered Intermediate Predictions
Transitional Uncertainty with Layered Intermediate Predictions
Ryan Benkert
Mohit Prabhushankar
Ghassan AlRegib
122
2
0
25 May 2024
Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real
  World
Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real World
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Bani Mallick
UQCV
112
0
0
29 Mar 2024
UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers
UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers
Hong Jia
Young D. Kwon
Dong Ma
Nhat Pham
Lorena Qendro
Tam N. Vu
Cecilia Mascolo
109
4
0
14 Feb 2024
Towards Improving Calibration in Object Detection Under Domain Shift
Towards Improving Calibration in Object Detection Under Domain Shift
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
127
24
0
15 Sep 2022
Uncertainty-Induced Transferability Representation for Source-Free
  Unsupervised Domain Adaptation
Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation
Jiangbo Pei
Zhuqing Jiang
Aidong Men
Liang Chen
Yang Liu
Qingchao Chen
97
31
0
30 Aug 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
99
18
0
20 Jul 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
115
4
0
28 Jun 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
125
0
0
27 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
310
61
0
01 May 2022
Expanding Low-Density Latent Regions for Open-Set Object Detection
Expanding Low-Density Latent Regions for Open-Set Object Detection
Jiaming Han
Yuqiang Ren
Jian Ding
Xingjia Pan
Ke Yan
Guisong Xia
ObjD
137
69
0
28 Mar 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
  Neural Network Calibration
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
137
51
0
25 Mar 2022
UQGAN: A Unified Model for Uncertainty Quantification of Deep
  Classifiers trained via Conditional GANs
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
Philipp Oberdiek
G. Fink
Matthias Rottmann
OODD
201
19
0
31 Jan 2022
Training on Test Data with Bayesian Adaptation for Covariate Shift
Training on Test Data with Bayesian Adaptation for Covariate Shift
Aurick Zhou
Sergey Levine
OODTTA
133
13
0
27 Sep 2021
Energy-Based Open-World Uncertainty Modeling for Confidence Calibration
Energy-Based Open-World Uncertainty Modeling for Confidence Calibration
Yezhen Wang
Yue Liu
Tong Che
Kaiyang Zhou
Ziwei Liu
Dongsheng Li
UQCV
125
56
0
27 Jul 2021
OpenMatch: Open-set Consistency Regularization for Semi-supervised
  Learning with Outliers
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers
Kuniaki Saito
Donghyun Kim
Kate Saenko
101
66
0
28 May 2021
Distributional Gaussian Process Layers for Outlier Detection in Image
  Segmentation
Distributional Gaussian Process Layers for Outlier Detection in Image Segmentation
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
67
5
0
28 Apr 2021
OVANet: One-vs-All Network for Universal Domain Adaptation
OVANet: One-vs-All Network for Universal Domain Adaptation
Kuniaki Saito
Kate Saenko
250
161
0
07 Apr 2021
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
155
30
0
04 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
477
2,087
0
12 Nov 2020
1