Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.10930
Cited By
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
21 July 2020
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding"
50 / 93 papers shown
Title
Modeling Unseen Environments with Language-guided Composable Causal Components in Reinforcement Learning
Xinyue Wang
Biwei Huang
OffRL
CML
27
0
0
13 May 2025
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
38
0
0
17 Apr 2025
Mind the Gap: Bridging the Divide Between AI Aspirations and the Reality of Autonomous Characterization
Grace Guinan
Addison Salvador
Michelle A. Smeaton
Andrew Glaws
Hilary Egan
Brian C. Wyatt
Babak Anasori
K. Fiedler
M. Olszta
Steven Spurgeon
65
0
0
25 Feb 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Biwei Huang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Kun Zhang
CML
50
0
0
21 Jan 2025
Information Subtraction: Learning Representations for Conditional Entropy
Keng Hou Leong
Yuxuan Xiu
Wai Kin
Chan
36
0
0
02 Jan 2025
Learning Identifiable Factorized Causal Representations of Cellular Responses
Haiyi Mao
Romain Lopez
Kai Liu
Jan-Christian Huetter
David Richmond
Panayiotis Benos
Lin Qiu
CML
27
3
0
29 Oct 2024
Cross-Entropy Is All You Need To Invert the Data Generating Process
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSL
OOD
BDL
DRL
102
3
0
29 Oct 2024
Interpretable Representation Learning from Videos using Nonlinear Priors
Marian Longa
Joao F. Henriques
CML
DRL
24
0
0
24 Oct 2024
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon
Manish Shrivastava
David M. Krueger
Ekdeep Singh Lubana
42
7
0
15 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
32
3
0
09 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
29
0
0
07 Oct 2024
Causal Temporal Representation Learning with Nonstationary Sparse Transition
Xiangchen Song
Zijian Li
Guangyi Chen
Yujia Zheng
Yewen Fan
Xinshuai Dong
Kun Zhang
CML
23
2
0
05 Sep 2024
Compositional Image Decomposition with Diffusion Models
Jocelin Su
Nan Liu
Yanbo Wang
Joshua B. Tenenbaum
Yilun Du
CoGe
39
6
0
27 Jun 2024
Identifying latent state transition in non-linear dynamical systems
Çağlar Hızlı
Çağatay Yıldız
Matthias Bethge
ST John
Pekka Marttinen
OOD
18
0
0
05 Jun 2024
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
28
0
0
30 May 2024
Identifiability of a statistical model with two latent vectors: Importance of the dimensionality relation and application to graph embedding
Hiroaki Sasaki
CML
20
0
0
30 May 2024
On the Identification of Temporally Causal Representation with Instantaneous Dependence
Zijian Li
Yifan Shen
Kaitao Zheng
Ruichu Cai
Xiangchen Song
Mingming Gong
Zhengmao Zhu
Guan-Hong Chen
Kun Zhang
CML
29
5
0
24 May 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
40
6
0
22 May 2024
Position: Understanding LLMs Requires More Than Statistical Generalization
Patrik Reizinger
Szilvia Ujváry
Anna Mészáros
A. Kerekes
Wieland Brendel
Ferenc Huszár
36
12
0
03 May 2024
Towards Controllable Time Series Generation
Yifan Bao
Yihao Ang
Qiang Huang
Anthony K. H. Tung
Zhiyong Huang
DiffM
38
4
0
06 Mar 2024
CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process
Guan-Hong Chen
Yifan Shen
Zhenhao Chen
Xiangchen Song
Yuewen Sun
Weiran Yao
Xiao Liu
Kun Zhang
CML
24
7
0
25 Jan 2024
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CML
OOD
AI4TS
17
2
0
12 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
32
8
0
29 Nov 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard E. Turner
Aapo Hyvarinen
CML
17
2
0
28 Nov 2023
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
29
4
0
08 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
37
30
0
07 Nov 2023
Temporally Disentangled Representation Learning under Unknown Nonstationarity
Xiangchen Song
Weiran Yao
Yewen Fan
Xinshuai Dong
Guan-Hong Chen
Juan Carlos Niebles
Eric P. Xing
Kun Zhang
CML
OOD
31
12
0
28 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
25
9
0
24 Oct 2023
Identifying Interpretable Visual Features in Artificial and Biological Neural Systems
David A. Klindt
Sophia Sanborn
Francisco Acosta
Frédéric Poitevin
Nina Miolane
MILM
FAtt
41
7
0
17 Oct 2023
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
32
17
0
09 Oct 2023
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Z. Hao
Kun Zhang
21
33
0
07 Oct 2023
Flow Factorized Representation Learning
Yue Song
Thomas Anderson Keller
N. Sebe
Max Welling
DRL
OOD
21
3
0
22 Sep 2023
Stable and Causal Inference for Discriminative Self-supervised Deep Visual Representations
Yuewei Yang
Hai Helen Li
Yiran Chen
CML
OOD
17
1
0
16 Aug 2023
Learning Disentangled Discrete Representations
David Friede
Christian Reimers
Heiner Stuckenschmidt
Mathias Niepert
CoGe
OCL
OOD
DRL
16
0
0
26 Jul 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
34
25
0
05 Jul 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
20
6
0
02 Jul 2023
On the Identifiability of Quantized Factors
Vitória Barin Pacela
Kartik Ahuja
Simon Lacoste-Julien
Pascal Vincent
OOD
CML
21
1
0
28 Jun 2023
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
41
28
0
16 Jun 2023
Learning World Models with Identifiable Factorization
Yu-Ren Liu
Biwei Huang
Zhengmao Zhu
Hong Tian
Mingming Gong
Yang Yu
Kun Zhang
CML
OffRL
20
12
0
11 Jun 2023
Partial Identifiability for Domain Adaptation
Lingjing Kong
Shaoan Xie
Weiran Yao
Yujia Zheng
Guan-Hong Chen
P. Stojanov
Victor Akinwande
Kun Zhang
40
8
0
10 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
18
24
0
28 May 2023
On the Identifiability of Switching Dynamical Systems
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
30
4
0
25 May 2023
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
31
31
0
23 May 2023
Latent Processes Identification From Multi-View Time Series
Zenan Huang
Haobo Wang
J. Zhao
Nenggan Zheng
AI4TS
11
4
0
14 May 2023
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
27
3
0
05 Apr 2023
Nonlinear Independent Component Analysis for Principled Disentanglement in Unsupervised Deep Learning
Aapo Hyvarinen
Ilyes Khemakhem
H. Morioka
CML
OOD
25
34
0
29 Mar 2023
Identifiability Results for Multimodal Contrastive Learning
Imant Daunhawer
Alice Bizeul
Emanuele Palumbo
Alexander Marx
Julia E. Vogt
22
38
0
16 Mar 2023
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
30
41
0
06 Feb 2023
Learning Interpretable Low-dimensional Representation via Physical Symmetry
Xuanjie Liu
Daniel Y. Chin
Yichen Huang
Gus Xia
16
3
0
05 Feb 2023
1
2
Next