Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.10930
Cited By
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
21 July 2020
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding"
43 / 93 papers shown
Title
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
53
11
0
29 Jan 2023
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
Yuejiang Liu
Alexandre Alahi
Chris Russell
Max Horn
Dominik Zietlow
Bernhard Schölkopf
Francesco Locatello
CML
56
22
0
12 Jan 2023
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
18
32
0
26 Nov 2022
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
27
45
0
15 Nov 2022
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
21
48
0
24 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
33
33
0
13 Oct 2022
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
13
12
0
12 Oct 2022
Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles
Martin Bjerke
Lukas Schott
Kristopher T. Jensen
Claudia Battistin
David A. Klindt
Benjamin A. Dunn
22
7
0
06 Oct 2022
A Multiagent Framework for the Asynchronous and Collaborative Extension of Multitask ML Systems
Andrea Gesmundo
21
2
0
29 Sep 2022
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
39
83
0
24 Sep 2022
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
Andrea Gesmundo
19
18
0
15 Sep 2022
Pixel-level Correspondence for Self-Supervised Learning from Video
Yash Sharma
Yi Zhu
Chris Russell
Thomas Brox
SSL
8
4
0
08 Jul 2022
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
23
48
0
20 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
24
28
0
13 Jun 2022
An Empirical Study on Disentanglement of Negative-free Contrastive Learning
Jinkun Cao
Ruiqian Nai
Qing Yang
Jialei Huang
Yang Gao
CoGe
DRL
19
9
0
09 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
30
19
0
06 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
Indeterminacy in Generative Models: Characterization and Strong Identifiability
Quanhan Xi
Benjamin Bloem-Reddy
6
22
0
02 Jun 2022
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Andrea Gesmundo
J. Dean
31
23
0
25 May 2022
Lost in Latent Space: Disentangled Models and the Challenge of Combinatorial Generalisation
M. Montero
J. Bowers
Rui Ponte Costa
Casimir J. H. Ludwig
Gaurav Malhotra
DRL
CoGe
17
11
0
05 Apr 2022
Learnable latent embeddings for joint behavioral and neural analysis
Steffen Schneider
Jin Hwa Lee
Mackenzie W. Mathis
11
207
0
01 Apr 2022
Learning Latent Causal Dynamics
Weiran Yao
Guan-Hong Chen
Kun Zhang
OOD
CML
OffRL
14
13
0
10 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
40
101
0
07 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
31
7
0
29 Dec 2021
Object Pursuit: Building a Space of Objects via Discriminative Weight Generation
Chuanyu Pan
Yanchao Yang
Kaichun Mo
Yueqi Duan
Leonidas J. Guibas
OCL
21
1
0
15 Dec 2021
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
19
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
21
38
0
29 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDL
CML
14
85
0
11 Oct 2021
Topographic VAEs learn Equivariant Capsules
Thomas Anderson Keller
Max Welling
BDL
36
38
0
03 Sep 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
41
133
0
21 Jul 2021
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain
Lukas Schott
Julius von Kügelgen
Frederik Trauble
Peter V. Gehler
Chris Russell
Matthias Bethge
Bernhard Schölkopf
Francesco Locatello
Wieland Brendel
OOD
DRL
35
66
0
17 Jul 2021
An Image is Worth More Than a Thousand Words: Towards Disentanglement in the Wild
Aviv Gabbay
Niv Cohen
Yedid Hoshen
CoGe
DRL
23
33
0
29 Jun 2021
Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA
Hermanni Hälvä
Sylvain Le Corff
Luc Lehéricy
Jonathan So
Yongjie Zhu
Elisabeth Gassiat
Aapo Hyvarinen
CML
29
64
0
17 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
17
302
0
08 Jun 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
A. Hengel
23
86
0
12 May 2021
Variable-rate discrete representation learning
Sander Dieleman
C. Nash
Jesse Engel
Karen Simonyan
BDL
DRL
24
23
0
10 Mar 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
207
0
17 Feb 2021
Demystifying Inductive Biases for
β
β
β
-VAE Based Architectures
Dominik Zietlow
Michal Rolínek
Georg Martius
CoGe
DRL
CML
11
8
0
12 Feb 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
A. Ross
Finale Doshi-Velez
DRL
14
13
0
09 Feb 2021
Autoencoding Slow Representations for Semi-supervised Data Efficient Regression
Oliver Struckmeier
Kshitij Tiwari
Ville Kyrki
DRL
23
3
0
11 Dec 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
27
80
0
27 Oct 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
26
115
0
14 Jun 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
178
313
0
07 Feb 2020
Previous
1
2