Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.12927
Cited By
Neural networks with late-phase weights
25 July 2020
J. Oswald
Seijin Kobayashi
Alexander Meulemans
Christian Henning
Benjamin Grewe
João Sacramento
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural networks with late-phase weights"
14 / 14 papers shown
Title
DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models
Nastaran Saadati
Minh Pham
Nasla Saleem
Joshua R. Waite
Aditya Balu
Zhanhong Jiang
Chinmay Hegde
Soumik Sarkar
MoMe
35
1
0
11 Apr 2024
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
53
7
0
25 Sep 2023
Understanding the effect of sparsity on neural networks robustness
Lukas Timpl
R. Entezari
Hanie Sedghi
Behnam Neyshabur
O. Saukh
23
11
0
22 Jun 2022
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
42
906
1
10 Mar 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
23
49
0
28 Jun 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
41
93
0
22 Jun 2021
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
17
70
0
06 Mar 2021
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
11
85
0
20 Feb 2021
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
267
404
0
09 Apr 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
252
11,677
0
09 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
9,134
0
06 Jun 2015
1