ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03697
  4. Cited By
Fully Automated Photogrammetric Data Segmentation and Object Information
  Extraction Approach for Creating Simulation Terrain

Fully Automated Photogrammetric Data Segmentation and Object Information Extraction Approach for Creating Simulation Terrain

9 August 2020
Meida Chen
Andrew Feng
Kyle McCullough
P. Prasad
R. McAlinden
L. Soibelman
M. Enloe
ArXivPDFHTML

Papers citing "Fully Automated Photogrammetric Data Segmentation and Object Information Extraction Approach for Creating Simulation Terrain"

2 / 2 papers shown
Title
STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point
  Cloud Dataset
STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset
Meida Chen
Qingyong Hu
Zifan Yu
Hugues Thomas
Andrew Feng
Yu Hou
Kyle McCullough
Fengbo Ren
L. Soibelman
SLR
AI4TS
16
63
0
17 Mar 2022
Generating synthetic photogrammetric data for training deep learning
  based 3D point cloud segmentation models
Generating synthetic photogrammetric data for training deep learning based 3D point cloud segmentation models
Meida Chen
Andrew Feng
Kyle McCullough
P. Prasad
R. McAlinden
L. Soibelman
3DPC
16
6
0
21 Aug 2020
1