ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05367
  4. Cited By
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
v1v2v3 (latest)

Non-convex Learning via Replica Exchange Stochastic Gradient MCMC

12 August 2020
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
    BDL
ArXiv (abs)PDFHTML

Papers citing "Non-convex Learning via Replica Exchange Stochastic Gradient MCMC"

35 / 35 papers shown
Title
One Period to Rule Them All: Identifying Critical Learning Periods in Deep Networks
One Period to Rule Them All: Identifying Critical Learning Periods in Deep Networks
Vinicius Yuiti Fukase
Heitor Gama
Bárbara Dias Bueno
Lucas Libanio
A. H. R. Costa
Artur Jordao
12
0
0
19 Jun 2025
Continuous Policy and Value Iteration for Stochastic Control Problems and Its Convergence
Qi Feng
Gu Wang
10
0
0
09 Jun 2025
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
215
2
0
16 May 2025
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Nian Yao
Pervez Ali
Xihua Tao
Lingjiong Zhu
75
1
0
24 Mar 2025
LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
Cindy Xiangrui Kong
Haoyang Zheng
Guang Lin
AI4CE
78
0
0
04 Mar 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDLUQCV
100
0
0
02 Mar 2025
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Luxu Liang
Yuhang Jia
Feng Zhou
135
0
0
26 Feb 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
114
0
0
25 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
91
0
0
01 Feb 2025
Hard-Attention Gates with Gradient Routing for Endoscopic Image
  Computing
Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing
Giorgio Roffo
Carlo Biffi
Pietro Salvagnini
Andrea Cherubini
55
0
0
05 Jul 2024
Feynman-Kac Operator Expectation Estimator
Feynman-Kac Operator Expectation Estimator
Jingyuan Li
Wei Liu
81
0
0
02 Jul 2024
Constrained Exploration via Reflected Replica Exchange Stochastic
  Gradient Langevin Dynamics
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
65
5
0
13 May 2024
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling
Patrick Pynadath
Riddhiman Bhattacharya
Arun Hariharan
Ruqi Zhang
77
5
0
27 Feb 2024
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty
  Quantification in Deep Operator Networks
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty Quantification in Deep Operator Networks
Christian Moya
Amirhossein Mollaali
Zecheng Zhang
Lu Lu
Guang Lin
UQCV
91
19
0
23 Feb 2024
Accelerating Approximate Thompson Sampling with Underdamped Langevin
  Monte Carlo
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
Haoyang Zheng
Wei Deng
Christian Moya
Guang Lin
87
6
0
22 Jan 2024
B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the
  Response of Complex Dynamical Systems to Length-Variant Multiple Input
  Functions
B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the Response of Complex Dynamical Systems to Length-Variant Multiple Input Functions
Zhihao Kong
Amirhossein Mollaali
Christian Moya
Na Lu
Guang Lin
74
2
0
28 Nov 2023
Statistical guarantees for stochastic Metropolis-Hastings
Statistical guarantees for stochastic Metropolis-Hastings
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
80
1
0
13 Oct 2023
Deep Operator Learning-based Surrogate Models with Uncertainty
  Quantification for Optimizing Internal Cooling Channel Rib Profiles
Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles
Izzet Sahin
Christian Moya
Amirhossein Mollaali
Guang Lin
Guillermo Paniagua
AI4CE
73
17
0
01 Jun 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
68
0
0
23 May 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
437
4
0
05 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
95
21
0
15 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
69
4
0
20 Nov 2022
Bayesian autoencoders for data-driven discovery of coordinates,
  governing equations and fundamental constants
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
86
22
0
19 Nov 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
79
10
0
20 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao Song
Guang Lin
FedML
82
17
0
09 Dec 2021
Accelerated replica exchange stochastic gradient Langevin diffusion
  enhanced Bayesian DeepONet for solving noisy parametric PDEs
Accelerated replica exchange stochastic gradient Langevin diffusion enhanced Bayesian DeepONet for solving noisy parametric PDEs
Guang Lin
Christian Moya
Zecheng Zhang
76
30
0
03 Nov 2021
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient
  adaptive algorithms for neural networks
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dong-Young Lim
Sotirios Sabanis
97
12
0
28 May 2021
UPANets: Learning from the Universal Pixel Attention Networks
UPANets: Learning from the Universal Pixel Attention Networks
Ching-Hsun Tseng
Shin-Jye Lee
Jianxing Feng
Shengzhong Mao
Yuping Wu
Jia-Yu Shang
Mou-Chung Tseng
Xiao-Jun Zeng
52
15
0
15 Mar 2021
A New Framework for Variance-Reduced Hamiltonian Monte Carlo
A New Framework for Variance-Reduced Hamiltonian Monte Carlo
Zhengmian Hu
Feihu Huang
Heng-Chiao Huang
29
0
0
09 Feb 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
76
28
0
19 Oct 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
101
36
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC
  via Variance Reduction
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
74
9
0
02 Oct 2020
flexgrid2vec: Learning Efficient Visual Representations Vectors
flexgrid2vec: Learning Efficient Visual Representations Vectors
Ali Hamdi
D. Kim
Flora D. Salim
SSLGNN
88
7
0
30 Jul 2020
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Ruilin Li
H. Zha
Molei Tao
72
8
0
16 Jun 2020
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Mao Ye
Zhaolin Ren
Qiang Liu
61
8
0
21 Feb 2020
1