Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.05367
Cited By
v1
v2
v3 (latest)
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
12 August 2020
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Non-convex Learning via Replica Exchange Stochastic Gradient MCMC"
35 / 35 papers shown
Title
One Period to Rule Them All: Identifying Critical Learning Periods in Deep Networks
Vinicius Yuiti Fukase
Heitor Gama
Bárbara Dias Bueno
Lucas Libanio
A. H. R. Costa
Artur Jordao
12
0
0
19 Jun 2025
Continuous Policy and Value Iteration for Stochastic Control Problems and Its Convergence
Qi Feng
Gu Wang
10
0
0
09 Jun 2025
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
215
2
0
16 May 2025
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Nian Yao
Pervez Ali
Xihua Tao
Lingjiong Zhu
75
1
0
24 Mar 2025
LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
Cindy Xiangrui Kong
Haoyang Zheng
Guang Lin
AI4CE
78
0
0
04 Mar 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
100
0
0
02 Mar 2025
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Luxu Liang
Yuhang Jia
Feng Zhou
135
0
0
26 Feb 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
114
0
0
25 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
91
0
0
01 Feb 2025
Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing
Giorgio Roffo
Carlo Biffi
Pietro Salvagnini
Andrea Cherubini
57
0
0
05 Jul 2024
Feynman-Kac Operator Expectation Estimator
Jingyuan Li
Wei Liu
81
0
0
02 Jul 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
65
5
0
13 May 2024
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling
Patrick Pynadath
Riddhiman Bhattacharya
Arun Hariharan
Ruqi Zhang
77
5
0
27 Feb 2024
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty Quantification in Deep Operator Networks
Christian Moya
Amirhossein Mollaali
Zecheng Zhang
Lu Lu
Guang Lin
UQCV
91
19
0
23 Feb 2024
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
Haoyang Zheng
Wei Deng
Christian Moya
Guang Lin
87
6
0
22 Jan 2024
B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the Response of Complex Dynamical Systems to Length-Variant Multiple Input Functions
Zhihao Kong
Amirhossein Mollaali
Christian Moya
Na Lu
Guang Lin
74
2
0
28 Nov 2023
Statistical guarantees for stochastic Metropolis-Hastings
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
80
1
0
13 Oct 2023
Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles
Izzet Sahin
Christian Moya
Amirhossein Mollaali
Guang Lin
Guillermo Paniagua
AI4CE
73
17
0
01 Jun 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
68
0
0
23 May 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
437
4
0
05 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
101
21
0
15 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
69
4
0
20 Nov 2022
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
86
22
0
19 Nov 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
79
10
0
20 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao Song
Guang Lin
FedML
82
17
0
09 Dec 2021
Accelerated replica exchange stochastic gradient Langevin diffusion enhanced Bayesian DeepONet for solving noisy parametric PDEs
Guang Lin
Christian Moya
Zecheng Zhang
76
30
0
03 Nov 2021
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dong-Young Lim
Sotirios Sabanis
97
12
0
28 May 2021
UPANets: Learning from the Universal Pixel Attention Networks
Ching-Hsun Tseng
Shin-Jye Lee
Jianxing Feng
Shengzhong Mao
Yuping Wu
Jia-Yu Shang
Mou-Chung Tseng
Xiao-Jun Zeng
52
15
0
15 Mar 2021
A New Framework for Variance-Reduced Hamiltonian Monte Carlo
Zhengmian Hu
Feihu Huang
Heng-Chiao Huang
29
0
0
09 Feb 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
76
28
0
19 Oct 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
101
36
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
74
9
0
02 Oct 2020
flexgrid2vec: Learning Efficient Visual Representations Vectors
Ali Hamdi
D. Kim
Flora D. Salim
SSL
GNN
88
7
0
30 Jul 2020
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Ruilin Li
H. Zha
Molei Tao
72
8
0
16 Jun 2020
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Mao Ye
Zhaolin Ren
Qiang Liu
61
8
0
21 Feb 2020
1