ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06545
  4. Cited By
GANplifying Event Samples
v1v2v3 (latest)

GANplifying Event Samples

14 August 2020
A. Butter
S. Diefenbacher
Gregor Kasieczka
Benjamin Nachman
Tilman Plehn
    GAN
ArXiv (abs)PDFHTML

Papers citing "GANplifying Event Samples"

23 / 23 papers shown
Title
Extrapolating Jet Radiation with Autoregressive Transformers
Extrapolating Jet Radiation with Autoregressive Transformers
A. Butter
François Charton
Javier Marino Villadamigo
Ayodele Ore
Tilman Plehn
Jonas Spinner
122
1
0
16 Dec 2024
Calibrating Bayesian Generative Machine Learning for Bayesiamplification
Calibrating Bayesian Generative Machine Learning for Bayesiamplification
S. Bieringer
S. Diefenbacher
Gregor Kasieczka
Mathias Trabs
48
4
0
01 Aug 2024
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular
  Calorimeters Using Convolutional Normalizing Flows
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
95
8
0
30 May 2024
Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion
Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion
Alexander Shmakov
Kevin Greif
M. Fenton
A. Ghosh
Pierre Baldi
D. Whiteson
DiffM
210
10
0
22 Apr 2024
Synthesis of pulses from particle detectors with a Generative
  Adversarial Network (GAN)
Synthesis of pulses from particle detectors with a Generative Adversarial Network (GAN)
A. Regadío
Luis Esteban
S. Sánchez-Prieto
GAN
74
2
0
10 Jan 2024
Improving new physics searches with diffusion models for event
  observables and jet constituents
Improving new physics searches with diffusion models for event observables and jet constituents
Debajyoti Sengupta
Matthew Leigh
J. A. Raine
Samuel Klein
T. Golling
DiffM
104
15
0
15 Dec 2023
Deep Generative Models for Detector Signature Simulation: A Taxonomic
  Review
Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
Baran Hashemi
Claudius Krause
70
16
0
15 Dec 2023
EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
E. Buhmann
Cedric Ewen
D. Faroughy
T. Golling
Gregor Kasieczka
Matthew Leigh
Guillaume Quétant
J. A. Raine
Debajyoti Sengupta
David Shih
DiffM
105
28
0
29 Sep 2023
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
  Calorimeter Simulation
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
E. Buhmann
F. Gaede
Gregor Kasieczka
A. Korol
W. Korcari
K. Krüger
Peter McKeown
DiffM
83
26
0
11 Sep 2023
CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter
  Simulation
CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation
E. Buhmann
S. Diefenbacher
E. Eren
F. Gaede
Gregor Kasieczka
A. Korol
W. Korcari
K. Krüger
Peter McKeown
DiffM
111
46
0
08 May 2023
Flow Away your Differences: Conditional Normalizing Flows as an
  Improvement to Reweighting
Flow Away your Differences: Conditional Normalizing Flows as an Improvement to Reweighting
M. Algren
T. Golling
M. Guth
C. Pollard
J. A. Raine
11
8
0
28 Apr 2023
High-precision regressors for particle physics
High-precision regressors for particle physics
F. Bishara
A. Paul
Jennifer Dy
PINNAI4CE
85
1
0
02 Feb 2023
EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets
EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets
E. Buhmann
Gregor Kasieczka
Jesse Thaler
3DPC
138
47
0
17 Jan 2023
New directions for surrogate models and differentiable programming for
  High Energy Physics detector simulation
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation
Andreas Adelmann
W. Hopkins
E. Kourlitis
Michael Kagan
Gregor Kasieczka
...
David Shih
Vinicius Mikuni
Benjamin Nachman
K. Pedro
D. Winklehner
73
31
0
15 Mar 2022
Comparing Machine Learning and Interpolation Methods for Loop-Level
  Calculations
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
82
12
0
29 Nov 2021
Generative Networks for Precision Enthusiasts
Generative Networks for Precision Enthusiasts
A. Butter
Theo Heimel
Sander Hummerich
Tobias Krebs
Tilman Plehn
Armand Rousselot
Sophia Vent
AI4CE
82
60
0
22 Oct 2021
Style-based quantum generative adversarial networks for Monte Carlo
  events
Style-based quantum generative adversarial networks for Monte Carlo events
Carlos Bravo-Prieto
J. Baglio
M. Cè
A. Francis
D. Grabowska
Stefano Carrazza
GAN
81
42
0
13 Oct 2021
Optimising simulations for diphoton production at hadron colliders using
  amplitude neural networks
Optimising simulations for diphoton production at hadron colliders using amplitude neural networks
Joseph Aylett-Bullock
S. Badger
Ryan Moodie
109
24
0
17 Jun 2021
A survey of machine learning-based physics event generation
A survey of machine learning-based physics event generation
Yasir Alanazi
Nobuo Sato
P. Ambrozewicz
A. H. Blin
W. Melnitchouk
M. Battaglieri
Tianbo Liu
Yaohang Li
AI4CE
53
17
0
01 Jun 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
118
55
0
09 Apr 2021
Simulating the Time Projection Chamber responses at the MPD detector
  using Generative Adversarial Networks
Simulating the Time Projection Chamber responses at the MPD detector using Generative Adversarial Networks
A. Maevskiy
F. Ratnikov
A. Zinchenko
V. Riabov
94
12
0
08 Dec 2020
DCTRGAN: Improving the Precision of Generative Models with Reweighting
DCTRGAN: Improving the Precision of Generative Models with Reweighting
S. Diefenbacher
E. Eren
Gregor Kasieczka
A. Korol
Benjamin Nachman
David Shih
78
44
0
03 Sep 2020
Simulation of electron-proton scattering events by a Feature-Augmented
  and Transformed Generative Adversarial Network (FAT-GAN)
Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)
Yasir Alanazi
Nobuo Sato
Tianbo Liu
W. Melnitchouk
P. Ambrozewicz
...
E. Pritchard
M. Robertson
R. Strauss
L. Velasco
Yaohang Li
GAN
79
64
0
29 Jan 2020
1