Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.13547
Cited By
v1
v2 (latest)
Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks
28 July 2020
Qiming Zhu
Zeliang Liu
Jinhui Yan
PINN
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks"
32 / 32 papers shown
Title
Physics-Informed Machine Learning for Smart Additive Manufacturing
Rahul Sharma
M. Raissi
Y. B. Guo
PINN
AI4CE
42
3
0
15 Jul 2024
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
69
1
0
08 Apr 2024
Advancing Additive Manufacturing through Deep Learning: A Comprehensive Review of Current Progress and Future Challenges
Amirul Islam Saimon
Emmanuel Yangue
Xiaowei Yue
Zhenyu Kong
Chenang Liu
AI4CE
84
7
0
01 Mar 2024
Preconditioning for Physics-Informed Neural Networks
Songming Liu
Chang Su
J. Yao
Zhongkai Hao
Hang Su
Youjia Wu
Jun Zhu
AI4CE
PINN
110
6
0
01 Feb 2024
Real-Time 2D Temperature Field Prediction in Metal Additive Manufacturing Using Physics-Informed Neural Networks
Pouyan Sajadi
M. Rahmani Dehaghani
Yifan Tang
G. G. Wang
PINN
AI4CE
33
0
0
04 Jan 2024
The Physics-Informed Neural Network Gravity Model: Generation III
John Martin
Hanspeter Schaub
PINN
108
0
0
15 Dec 2023
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
114
0
0
27 Sep 2023
Fast and Accurate Reduced-Order Modeling of a MOOSE-based Additive Manufacturing Model with Operator Learning
M. Yaseen
D. Yushu
P. German
Xuechun Wu
AI4CE
25
5
0
04 Aug 2023
Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics
Rahul Sharma
Y.B. Guo
M. Raissi
W. Guo
PINN
AI4CE
61
6
0
23 Jul 2023
A hybrid machine learning framework for clad characteristics prediction in metal additive manufacturing
S. Tayebati
K. Cho
AI4CE
44
3
0
04 Jul 2023
Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators
Jiangce Chen
Wenzhuo Xu
Martha Baldwin
Björn Nijhuis
T. Boogaard
Noelia Grande Gutiérrez
S. Narra
Christopher McComb
AI4CE
48
3
0
04 Jul 2023
Learning from Integral Losses in Physics Informed Neural Networks
Ehsan Saleh
Saba Ghaffari
Timothy Bretl
Luke N. Olson
Matthew West
PINN
AI4CE
72
4
0
27 May 2023
A Multi-Resolution Physics-Informed Recurrent Neural Network: Formulation and Application to Musculoskeletal Systems
Karan Taneja
Xiaolong He
Qizhi He
Jiun-Shyan Chen
77
9
0
26 May 2023
A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data
Elham Kiyani
K. Shukla
George Karniadakis
M. Karttunen
73
22
0
18 May 2023
Simulation and Prediction of Countercurrent Spontaneous Imbibition at Early and Late Times Using Physics-Informed Neural Networks
J. Abbasi
P. Andersen
PINN
55
5
0
06 May 2023
Physics-aware deep learning framework for linear elasticity
Anisha Roy
Rikhi Bose
AI4CE
83
8
0
19 Feb 2023
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
95
2
0
06 Feb 2023
Spatio-Temporal Super-Resolution of Dynamical Systems using Physics-Informed Deep-Learning
Rajat Arora
Ankit Shrivastava
AI4CE
96
4
0
08 Dec 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
125
99
0
15 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
77
21
0
27 Oct 2022
New Metric Formulas that Include Measurement Errors in Machine Learning for Natural Sciences
Umberto Michelucci
F. Venturini
34
5
0
30 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
41
3
0
06 Sep 2022
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
109
52
0
05 Jul 2022
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
83
10
0
30 Jun 2022
Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
Shuheng Liao
Tianju Xue
Jihoon Jeong
Samantha Webster
K. Ehmann
Jian Cao
AI4CE
70
53
0
15 Jun 2022
Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks
Raghav Gnanasambandam
Bo Shen
Jihoon Chung
Xubo Yue
Zhenyu
Zhen Kong
LRM
153
12
0
26 Apr 2022
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora
P. Kakkar
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
114
20
0
20 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
136
1,299
0
14 Jan 2022
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
75
145
0
14 Oct 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
89
156
0
09 Oct 2021
A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity
M. Vahab
E. Haghighat
M. Khaleghi
N. Khalili
PINN
120
45
0
16 Aug 2021
A Physics-Informed Machine Learning Model for Porosity Analysis in Laser Powder Bed Fusion Additive Manufacturing
Rui Liu
Sen Liu
Xiaoli Zhang
AI4CE
33
86
0
13 Jan 2021
1