ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05487
  4. Cited By
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples

The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples

11 September 2020
Timo Freiesleben
    GAN
ArXivPDFHTML

Papers citing "The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples"

29 / 29 papers shown
Title
Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Jeremy Goldwasser
Giles Hooker
AAML
24
0
0
21 Apr 2025
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
44
0
0
03 Apr 2025
Guidelines For The Choice Of The Baseline in XAI Attribution Methods
Guidelines For The Choice Of The Baseline in XAI Attribution Methods
Cristian Morasso
Giorgio Dolci
I. Galazzo
Sergey M. Plis
Gloria Menegaz
37
0
0
25 Mar 2025
All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
All You Need for Counterfactual Explainability Is Principled and Reliable Estimate of Aleatoric and Epistemic Uncertainty
Kacper Sokol
Eyke Hüllermeier
51
2
0
24 Feb 2025
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
29
1
0
10 Jan 2025
Faithfulness and the Notion of Adversarial Sensitivity in NLP
  Explanations
Faithfulness and the Notion of Adversarial Sensitivity in NLP Explanations
Supriya Manna
Niladri Sett
AAML
29
2
0
26 Sep 2024
CF-OPT: Counterfactual Explanations for Structured Prediction
CF-OPT: Counterfactual Explanations for Structured Prediction
Germain Vivier--Ardisson
Alexandre Forel
Axel Parmentier
Thibaut Vidal
OffRL
CML
BDL
30
1
0
28 May 2024
Trustworthy Actionable Perturbations
Trustworthy Actionable Perturbations
Jesse Friedbaum
S. Adiga
Ravi Tandon
AAML
28
2
0
18 May 2024
Do Counterfactual Examples Complicate Adversarial Training?
Do Counterfactual Examples Complicate Adversarial Training?
Eric C. Yeats
Cameron Darwin
Eduardo Ortega
Frank Liu
Hai Li
DiffM
30
0
0
16 Apr 2024
CountARFactuals -- Generating plausible model-agnostic counterfactual
  explanations with adversarial random forests
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
27
5
0
04 Apr 2024
Machine Learning Robustness: A Primer
Machine Learning Robustness: A Primer
Houssem Ben Braiek
Foutse Khomh
AAML
OOD
24
5
0
01 Apr 2024
Towards Non-Adversarial Algorithmic Recourse
Towards Non-Adversarial Algorithmic Recourse
Tobias Leemann
Martin Pawelczyk
Bardh Prenkaj
Gjergji Kasneci
AAML
21
0
0
15 Mar 2024
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary
  Knowledge
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge
L. Fenaux
Florian Kerschbaum
AAML
29
0
0
22 Feb 2024
Fragility, Robustness and Antifragility in Deep Learning
Fragility, Robustness and Antifragility in Deep Learning
Chandresh Pravin
Ivan Martino
Giuseppe Nicosia
Varun Ojha
8
0
0
15 Dec 2023
Artificial Neural Nets and the Representation of Human Concepts
Artificial Neural Nets and the Representation of Human Concepts
Timo Freiesleben
NAI
9
1
0
08 Dec 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
18
4
0
30 Oct 2023
Generating collective counterfactual explanations in score-based
  classification via mathematical optimization
Generating collective counterfactual explanations in score-based classification via mathematical optimization
E. Carrizosa
Jasone Ramírez-Ayerbe
Dolores Romero Morales
21
18
0
19 Oct 2023
On the Trade-offs between Adversarial Robustness and Actionable
  Explanations
On the Trade-offs between Adversarial Robustness and Actionable Explanations
Satyapriya Krishna
Chirag Agarwal
Himabindu Lakkaraju
AAML
14
0
0
28 Sep 2023
counterfactuals: An R Package for Counterfactual Explanation Methods
counterfactuals: An R Package for Counterfactual Explanation Methods
Susanne Dandl
Andreas Hofheinz
Martin Binder
B. Bischl
Giuseppe Casalicchio
19
2
0
13 Apr 2023
Clarity: an improved gradient method for producing quality visual
  counterfactual explanations
Clarity: an improved gradient method for producing quality visual counterfactual explanations
Claire Theobald
Frédéric Pennerath
Brieuc Conan-Guez
Miguel Couceiro
Amedeo Napoli
BDL
28
0
0
22 Nov 2022
Interpretation of Black Box NLP Models: A Survey
Interpretation of Black Box NLP Models: A Survey
Shivani Choudhary
N. Chatterjee
S. K. Saha
FAtt
23
10
0
31 Mar 2022
Towards Explainable Evaluation Metrics for Natural Language Generation
Towards Explainable Evaluation Metrics for Natural Language Generation
Christoph Leiter
Piyawat Lertvittayakumjorn
M. Fomicheva
Wei-Ye Zhao
Yang Gao
Steffen Eger
AAML
ELM
19
20
0
21 Mar 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
19
36
0
22 Jan 2022
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
17
16
0
16 Jul 2021
Contrastive Explanations for Model Interpretability
Contrastive Explanations for Model Interpretability
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
12
94
0
02 Mar 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and
  Imbalanced Data
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
48
71
0
20 Jan 2021
Transferable Adversarial Attacks for Image and Video Object Detection
Transferable Adversarial Attacks for Image and Video Object Detection
Xingxing Wei
Siyuan Liang
Ning Chen
Xiaochun Cao
AAML
72
220
0
30 Nov 2018
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
250
5,813
0
08 Jul 2016
1