Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.07701
Cited By
Kaggle forecasting competitions: An overlooked learning opportunity
16 September 2020
Casper Solheim Bojer
Jens Peder Meldgaard
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kaggle forecasting competitions: An overlooked learning opportunity"
46 / 46 papers shown
Title
Optimizing AI-Assisted Code Generation
Simon Torka
Sahin Albayrak
70
0
0
14 Dec 2024
A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models
Vamsi Krishna Pendyala
H. Sarjoughian
Bala Potineni
E. Yellig
28
0
0
17 Aug 2024
AnnotatedTables: A Large Tabular Dataset with Language Model Annotations
Yaojie Hu
Ilias Fountalis
Jin Tian
N. Vasiloglou
LMTD
34
3
0
24 Jun 2024
Beyond Trend Following: Deep Learning for Market Trend Prediction
Fernando Berzal
Alberto Garcia
40
0
0
10 Jun 2024
Optimizing Sales Forecasts through Automated Integration of Market Indicators
Lina Döring
Felix Grumbach
Pascal Reusch
13
0
0
15 May 2024
Efficient adjustment for complex covariates: Gaining efficiency with DOPE
Alexander Mangulad Christgau
Niels Richard Hansen
45
2
0
20 Feb 2024
Improving the accuracy of freight mode choice models: A case study using the 2017 CFS PUF data set and ensemble learning techniques
Diyi Liu
Hyeonsup Lim
M. Uddin
Yuandong Liu
Lee D. Han
Ho-Ling Hwang
Shih-Miao Chin
11
0
0
01 Feb 2024
Deep Non-Parametric Time Series Forecaster
Syama Sundar Rangapuram
Jan Gasthaus
Lorenzo Stella
Valentin Flunkert
David Salinas
Yuyang Wang
Tim Januschowski
AI4TS
25
5
0
22 Dec 2023
Online multiple testing with e-values
Ziyu Xu
Aaditya Ramdas
26
2
0
10 Nov 2023
Scalable Probabilistic Forecasting in Retail with Gradient Boosted Trees: A Practitioner's Approach
Xueying Long
Quang Bui
G. Oktavian
Daniel F. Schmidt
Christoph Bergmeir
Rakshitha Godahewa
Seong Per Lee
Kaifeng Zhao
Paul Condylis
26
0
0
02 Nov 2023
Efficient Social Choice via NLP and Sampling
Lior Ashkenazy
Nimrod Talmon
8
0
0
04 Sep 2023
Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
Rohit Dube
Natarajan Gautam
Amarnath Banerjee
Harsha Nagarajan
11
0
0
04 Sep 2023
Average partial effect estimation using double machine learning
Harvey Klyne
Rajen Dinesh Shah
14
3
0
17 Aug 2023
Sandwich Boosting for Accurate Estimation in Partially Linear Models for Grouped Data
Elliot H. Young
Rajen Dinesh Shah
22
1
0
21 Jul 2023
Forecasting Electric Vehicle Charging Station Occupancy: Smarter Mobility Data Challenge
Yvenn Amara-Ouali
Y. Goude
Nathan Doumèche
Pascal Veyret
Alexis Thomas
...
Aymeric Jan
Yannick Deleuze
Paul Berhaut
Sébastien Treguer
Tiphaine Phe-Neau
18
5
0
09 Jun 2023
CyPhERS: A Cyber-Physical Event Reasoning System providing real-time situational awareness for attack and fault response
Nils Müller
Kaibin Bao
Jörg Matthes
K. Heussen
33
5
0
26 May 2023
Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction
Yinan Liu
Xinyu Dong
Weimin Lyu
R. Rosenthal
Rachel Wong
Tengfei Ma
Fusheng Wang
30
0
0
09 May 2023
Streamlined Framework for Agile Forecasting Model Development towards Efficient Inventory Management
Jonathan Hans Soeseno
Sergio González
Trista Pei-chun Chen
AI4TS
13
1
0
13 Apr 2023
A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation
A. Khan
Omkar Chaudhari
Rohitash Chandra
31
166
0
06 Apr 2023
Variational Boosted Soft Trees
Tristan Cinquin
Tammo Rukat
Philipp Schmidt
Martin Wistuba
Artur Bekasov
BDL
UQCV
19
0
0
21 Feb 2023
DivBO: Diversity-aware CASH for Ensemble Learning
Yu Shen
Yupeng Lu
Yang Li
Yaofeng Tu
Wentao Zhang
Bin Cui
17
6
0
07 Feb 2023
DANLIP: Deep Autoregressive Networks for Locally Interpretable Probabilistic Forecasting
Ozan Ozyegen
Juyoung Wang
Mucahit Cevik
BDL
AI4TS
6
1
0
05 Jan 2023
Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load Forecasting
Slawek Smyl
Grzegorz Dudek
Paweł Pełka
AI4TS
29
14
0
18 Dec 2022
SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series Forecasting
Rakshitha Godahewa
G. Webb
Daniel F. Schmidt
Christoph Bergmeir
21
8
0
16 Nov 2022
Experimental study of time series forecasting methods for groundwater level prediction
Michael Franklin Mbouopda
Thomas Guyet
Nicolas Labroche
Abel Henriot
21
1
0
28 Sep 2022
Interpretable Time Series Clustering Using Local Explanations
Ozan Ozyegen
Nicholas Prayogo
Mucahit Cevik
Ayse Basar
FAtt
AI4TS
16
1
0
01 Aug 2022
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
27
28
0
17 Jun 2022
Lassoed Tree Boosting
Alejandro Schuler
Yi Li
Mark van der Laan
30
3
0
22 May 2022
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
19
22
0
30 Apr 2022
STD: A Seasonal-Trend-Dispersion Decomposition of Time Series
Grzegorz Dudek
AI4TS
9
32
0
21 Apr 2022
Forecast Evaluation for Data Scientists: Common Pitfalls and Best Practices
Hansika Hewamalage
Klaus Ackermann
Christoph Bergmeir
AI4TS
67
87
0
21 Mar 2022
LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for Forecasting, with an Application to Electricity Smart Meter Data
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
AI4TS
14
16
0
15 Feb 2022
LoMEF: A Framework to Produce Local Explanations for Global Model Time Series Forecasts
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
Rob J. Hyndman
FAtt
AI4TS
11
13
0
13 Nov 2021
A Multi-scale Time-series Dataset with Benchmark for Machine Learning in Decarbonized Energy Grids
Xiangtian Zheng
Nan Xu
Loc Trinh
Dongqi Wu
Tong Huang
S. Sivaranjani
Yan Liu
Le Xie
AI4CE
28
43
0
12 Oct 2021
Coresets for Decision Trees of Signals
Ibrahim Jubran
Ernesto Evgeniy Sanches Shayda
I. Newman
Dan Feldman
17
17
0
07 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
646
0
05 Oct 2021
Fit4CAD: A point cloud benchmark for fitting simple geometric primitives in CAD objects
C. Romanengo
Andrea Raffo
Yifan Qie
N. Anwer
B. Falcidieno
3DPC
11
22
0
14 May 2021
Monash Time Series Forecasting Archive
Rakshitha Godahewa
Christoph Bergmeir
Geoffrey I. Webb
Rob J. Hyndman
Pablo Montero-Manso
AI4TS
16
144
0
14 May 2021
How to effectively use machine learning models to predict the solutions for optimization problems: lessons from loss function
M. Abolghasemi
B. Abbasi
Toktam Babaei
S. Z. Hosseinifard
AI4CE
11
9
0
14 May 2021
A hybrid ensemble method with negative correlation learning for regression
Yun Bai
Ganglin Tian
Yanfei Kang
Suling Jia
11
3
0
06 Apr 2021
Exploring the representativeness of the M5 competition data
Evangelos Theodorou
Shengjie Wang
Yanfei Kang
Evangelos Spiliotis
Spyros Makridakis
Vassilios Assimakopoulos
14
16
0
04 Mar 2021
Wielding Occam's razor: Fast and frugal retail forecasting
F. Petropoulos
Y. Grushka-Cockayne
Enno Siemsen
Evangelos Spiliotis
17
7
0
23 Feb 2021
Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting
Longyuan Li
Jihai Zhang
Junchi Yan
Yaohui Jin
Yunhao Zhang
Yanjie Duan
Guangjian Tian
AI4TS
21
17
0
31 Jan 2021
Ensembles of Localised Models for Time Series Forecasting
Rakshitha Godahewa
Kasun Bandara
Geoffrey I. Webb
Slawek Smyl
Christoph Bergmeir
AI4TS
27
43
0
30 Dec 2020
Global Models for Time Series Forecasting: A Simulation Study
Hansika Hewamalage
Christoph Bergmeir
Kasun Bandara
AI4TS
18
57
0
23 Dec 2020
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
36
363
0
04 Dec 2020
1