ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08270
  4. Cited By
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals

Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals

17 September 2020
Saloni Dash
V. Balasubramanian
Amit Sharma
    CML
ArXivPDFHTML

Papers citing "Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals"

44 / 44 papers shown
Title
Explaining Low Perception Model Competency with High-Competency Counterfactuals
Explaining Low Perception Model Competency with High-Competency Counterfactuals
Sara Pohland
Claire Tomlin
DiffM
AAML
46
0
0
07 Apr 2025
Am I Being Treated Fairly? A Conceptual Framework for Individuals to Ascertain Fairness
Am I Being Treated Fairly? A Conceptual Framework for Individuals to Ascertain Fairness
Juliett Suárez Ferreira
Marija Slavkovik
Jorge Casillas
FaML
54
0
0
03 Apr 2025
AIM-Fair: Advancing Algorithmic Fairness via Selectively Fine-Tuning Biased Models with Contextual Synthetic Data
Zengqun Zhao
Ziquan Liu
Yu Cao
Shaogang Gong
Ioannis Patras
45
0
0
07 Mar 2025
Constructing Fair Latent Space for Intersection of Fairness and Explainability
Constructing Fair Latent Space for Intersection of Fairness and Explainability
Hyungjun Joo
Hyeonggeun Han
Sehwan Kim
Sangwoo Hong
Jungwoo Lee
32
0
0
23 Dec 2024
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
24
0
0
16 Oct 2024
Robust image representations with counterfactual contrastive learning
Robust image representations with counterfactual contrastive learning
Mélanie Roschewitz
Fabio De Sousa Ribeiro
Tian Xia
G. Khara
Ben Glocker
OOD
MedIm
43
2
0
16 Sep 2024
FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via
  Selective Tensor Freezing
FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via Selective Tensor Freezing
Kai Huang
Wei Gao
32
2
0
24 May 2024
Learning Structural Causal Models through Deep Generative Models:
  Methods, Guarantees, and Challenges
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges
Audrey Poinsot
Alessandro Leite
Nicolas Chesneau
Michèle Sébag
Marc Schoenauer
46
3
0
08 May 2024
Utilizing Adversarial Examples for Bias Mitigation and Accuracy
  Enhancement
Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement
Pushkar Shukla
Dhruv Srikanth
Lee Cohen
Matthew A. Turk
AAML
33
0
0
18 Apr 2024
Benchmarking Counterfactual Image Generation
Benchmarking Counterfactual Image Generation
Thomas Melistas
Nikos Spyrou
Nefeli Gkouti
Pedro Sanchez
Athanasios Vlontzos
Yannis Panagakis
G. Papanastasiou
Sotirios A. Tsaftaris
EGVM
CML
41
7
0
29 Mar 2024
Counterfactual contrastive learning: robust representations via causal
  image synthesis
Counterfactual contrastive learning: robust representations via causal image synthesis
Mélanie Roschewitz
Fabio De Sousa Ribeiro
Tian Xia
G. Khara
Ben Glocker
OOD
37
3
0
14 Mar 2024
Distributionally Generative Augmentation for Fair Facial Attribute
  Classification
Distributionally Generative Augmentation for Fair Facial Attribute Classification
Fengda Zhang
Qianpei He
Kun Kuang
Jiashuo Liu
Long Chen
Chao-Xiang Wu
Jun Xiao
Hanwang Zhang
CVBM
35
8
0
11 Mar 2024
Counterfactual Image Editing
Counterfactual Image Editing
Yushu Pan
Elias Bareinboim
BDL
CML
30
5
0
07 Feb 2024
Natural Counterfactuals With Necessary Backtracking
Natural Counterfactuals With Necessary Backtracking
Guang-Yuan Hao
Jiji Zhang
Biwei Huang
Hao Wang
Kun Zhang
26
0
0
02 Feb 2024
Causal Generative Explainers using Counterfactual Inference: A Case
  Study on the Morpho-MNIST Dataset
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
13
5
0
21 Jan 2024
Modular Learning of Deep Causal Generative Models for High-dimensional
  Causal Inference
Modular Learning of Deep Causal Generative Models for High-dimensional Causal Inference
Md Musfiqur Rahman
Murat Kocaoglu
OOD
22
2
0
02 Jan 2024
Leveraging Diffusion Perturbations for Measuring Fairness in Computer
  Vision
Leveraging Diffusion Perturbations for Measuring Fairness in Computer Vision
Nicholas Lui
Bryan Chia
William Berrios
Candace Ross
Douwe Kiela
19
2
0
25 Nov 2023
Improving Fairness using Vision-Language Driven Image Augmentation
Improving Fairness using Vision-Language Driven Image Augmentation
Moreno DÍncà
Christos Tzelepis
Ioannis Patras
N. Sebe
32
12
0
02 Nov 2023
Fast Model Debias with Machine Unlearning
Fast Model Debias with Machine Unlearning
Ruizhe Chen
Jianfei Yang
Huimin Xiong
Jianhong Bai
Tianxiang Hu
Jinxiang Hao
Yang Feng
Joey Tianyi Zhou
Jian Wu
Zuo-Qiang Liu
MU
16
57
0
19 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
A Quantitatively Interpretable Model for Alzheimer's Disease Prediction
  Using Deep Counterfactuals
A Quantitatively Interpretable Model for Alzheimer's Disease Prediction Using Deep Counterfactuals
Kwanseok Oh
Da-Woon Heo
A. Mulyadi
Wonsik Jung
Eunsong Kang
Kun Ho Lee
Heung-Il Suk
24
1
0
05 Oct 2023
The role of causality in explainable artificial intelligence
The role of causality in explainable artificial intelligence
Gianluca Carloni
Andrea Berti
Sara Colantonio
CML
XAI
40
6
0
18 Sep 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
13
11
0
02 Jun 2023
On Counterfactual Data Augmentation Under Confounding
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
26
0
0
29 May 2023
Measuring axiomatic soundness of counterfactual image models
Measuring axiomatic soundness of counterfactual image models
M. Monteiro
Fabio De Sousa Ribeiro
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
31
25
0
02 Mar 2023
Ethical Considerations for Responsible Data Curation
Ethical Considerations for Responsible Data Curation
Jerone T. A. Andrews
Dora Zhao
William Thong
Apostolos Modas
Orestis Papakyriakopoulos
Alice Xiang
17
19
0
07 Feb 2023
Counterfactual (Non-)identifiability of Learned Structural Causal Models
Counterfactual (Non-)identifiability of Learned Structural Causal Models
Arash Nasr-Esfahany
Emre Kıcıman
19
11
0
22 Jan 2023
Debiasing Methods for Fairer Neural Models in Vision and Language
  Research: A Survey
Debiasing Methods for Fairer Neural Models in Vision and Language Research: A Survey
Otávio Parraga
Martin D. Móre
C. M. Oliveira
Nathan Gavenski
L. S. Kupssinskü
Adilson Medronha
L. V. Moura
Gabriel S. Simões
Rodrigo C. Barros
34
11
0
10 Nov 2022
Counterfactual Generation Under Confounding
Counterfactual Generation Under Confounding
Abbavaram Gowtham Reddy
Saloni Dash
Amit Sharma
V. Balasubramanian
CML
29
2
0
22 Oct 2022
The Counterfactual-Shapley Value: Attributing Change in System Metrics
The Counterfactual-Shapley Value: Attributing Change in System Metrics
Amit Sharma
Hua Li
Jian Jiao
18
2
0
17 Aug 2022
Probing Classifiers are Unreliable for Concept Removal and Detection
Probing Classifiers are Unreliable for Concept Removal and Detection
Abhinav Kumar
Chenhao Tan
Amit Sharma
AAML
15
20
0
08 Jul 2022
Combining Counterfactuals With Shapley Values To Explain Image Models
Combining Counterfactuals With Shapley Values To Explain Image Models
Aditya Lahiri
Kamran Alipour
Ehsan Adeli
Babak Salimi
FAtt
18
6
0
14 Jun 2022
Explaining Image Classifiers Using Contrastive Counterfactuals in
  Generative Latent Spaces
Explaining Image Classifiers Using Contrastive Counterfactuals in Generative Latent Spaces
Kamran Alipour
Aditya Lahiri
Ehsan Adeli
Babak Salimi
M. Pazzani
CML
20
7
0
10 Jun 2022
Mitigating Bias in Facial Analysis Systems by Incorporating Label
  Diversity
Mitigating Bias in Facial Analysis Systems by Incorporating Label Diversity
Camila Kolling
Victor Araujo
Adriano Veloso
S. Musse
23
3
0
13 Apr 2022
Adversarial Counterfactual Augmentation: Application in Alzheimer's
  Disease Classification
Adversarial Counterfactual Augmentation: Application in Alzheimer's Disease Classification
Tian Xia
Pedro Sanchez
C. Qin
Sotirios A. Tsaftaris
OOD
MedIm
24
12
0
15 Mar 2022
Robustness and Adaptation to Hidden Factors of Variation
Robustness and Adaptation to Hidden Factors of Variation
William Paul
Philippe Burlina
13
0
0
03 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
19
67
0
21 Feb 2022
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
14
11
0
24 Nov 2021
UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models
UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models
Arvindkumar Krishnakumar
Tong He
Shengji Tang
Judy Hoffman
13
30
0
29 Oct 2021
Learning Disentangled Representations in the Imaging Domain
Learning Disentangled Representations in the Imaging Domain
Xiao Liu
Pedro Sanchez
Spyridon Thermos
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
DRL
19
71
0
26 Aug 2021
Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to
  Reinforce an Alzheimer's Disease Diagnosis Model
Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model
Kwanseok Oh
Jeeseok Yoon
Heung-Il Suk
FAtt
24
28
0
21 Aug 2021
Adaptation and Generalization for Unknown Sensitive Factors of
  Variations
Adaptation and Generalization for Unknown Sensitive Factors of Variations
William Paul
Philippe Burlina
AAML
28
0
0
28 Jul 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
106
0
20 Oct 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,344
0
12 Dec 2018
1