ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09521
  4. Cited By
Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear
  Decision Trees for Discrete Action Systems

Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear Decision Trees for Discrete Action Systems

20 September 2020
Yashesh D. Dhebar
Kalyanmoy Deb
S. Nageshrao
Ling Zhu
Dimitar Filev
ArXivPDFHTML

Papers citing "Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear Decision Trees for Discrete Action Systems"

6 / 6 papers shown
Title
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
36
3
0
28 Nov 2022
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal
  Treatment Regimes and Optimal Policy Design
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design
Ali Behrouz
Mathias Lécuyer
Cynthia Rudin
Margo Seltzer
OffRL
28
2
0
13 Oct 2022
Quality Diversity Evolutionary Learning of Decision Trees
Quality Diversity Evolutionary Learning of Decision Trees
Andrea Ferigo
Leonardo Lucio Custode
Giovanni Iacca
43
12
0
17 Aug 2022
Interpretable pipelines with evolutionarily optimized modules for RL
  tasks with visual inputs
Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs
Leonardo Lucio Custode
Giovanni Iacca
27
13
0
10 Feb 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
Particle Swarm Optimization for Generating Interpretable Fuzzy
  Reinforcement Learning Policies
Particle Swarm Optimization for Generating Interpretable Fuzzy Reinforcement Learning Policies
D. Hein
A. Hentschel
Thomas Runkler
Steffen Udluft
OffRL
28
79
0
19 Oct 2016
1