Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.09521
Cited By
Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear Decision Trees for Discrete Action Systems
20 September 2020
Yashesh D. Dhebar
Kalyanmoy Deb
S. Nageshrao
Ling Zhu
Dimitar Filev
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear Decision Trees for Discrete Action Systems"
6 / 6 papers shown
Title
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
36
3
0
28 Nov 2022
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design
Ali Behrouz
Mathias Lécuyer
Cynthia Rudin
Margo Seltzer
OffRL
28
2
0
13 Oct 2022
Quality Diversity Evolutionary Learning of Decision Trees
Andrea Ferigo
Leonardo Lucio Custode
Giovanni Iacca
43
12
0
17 Aug 2022
Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs
Leonardo Lucio Custode
Giovanni Iacca
27
13
0
10 Feb 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
Particle Swarm Optimization for Generating Interpretable Fuzzy Reinforcement Learning Policies
D. Hein
A. Hentschel
Thomas Runkler
Steffen Udluft
OffRL
28
79
0
19 Oct 2016
1