ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09535
  4. Cited By
Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts

Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts

20 September 2020
Sehwan Kim
Qifan Song
F. Liang
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts"

9 / 9 papers shown
Title
Training Latent Diffusion Models with Interacting Particle Algorithms
Training Latent Diffusion Models with Interacting Particle Algorithms
Tim Y. J. Wang
Juan Kuntz
O. Deniz Akyildiz
118
0
0
18 May 2025
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Andrew Millard
Zheng Zhao
Joshua Murphy
Simon Maskell
UQCVBDL
120
0
0
16 May 2025
Ito Diffusion Approximation of Universal Ito Chains for Sampling,
  Optimization and Boosting
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
Aleksei Ustimenko
Aleksandr Beznosikov
84
1
0
09 Oct 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDLOffRL
114
23
0
29 May 2023
Scalable Stochastic Gradient Riemannian Langevin Dynamics in
  Non-Diagonal Metrics
Scalable Stochastic Gradient Riemannian Langevin Dynamics in Non-Diagonal Metrics
Hanlin Yu
M. Hartmann
Bernardo Williams
Arto Klami
BDL
81
6
0
09 Mar 2023
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
74
35
0
13 Jul 2022
Differentially private training of neural networks with Langevin
  dynamics for calibrated predictive uncertainty
Differentially private training of neural networks with Langevin dynamics for calibrated predictive uncertainty
Moritz Knolle
Alexander Ziller
Dmitrii Usynin
R. Braren
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
UQCV
58
2
0
09 Jul 2021
Efficient and Generalizable Tuning Strategies for Stochastic Gradient
  MCMC
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
Jeremie Coullon
Leah F. South
Christopher Nemeth
85
12
0
27 May 2021
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
94
27
0
04 Dec 2020
1