ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.00892
  4. Cited By
Variance-Reduced Methods for Machine Learning

Variance-Reduced Methods for Machine Learning

2 October 2020
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
ArXivPDFHTML

Papers citing "Variance-Reduced Methods for Machine Learning"

18 / 18 papers shown
Title
Efficient Optimization Algorithms for Linear Adversarial Training
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
28
1
0
16 Oct 2024
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
68
2
0
10 Oct 2024
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
S. Joshi
Jiayi Ni
Baharan Mirzasoleiman
DD
65
2
0
03 Oct 2024
An Effective Dynamic Gradient Calibration Method for Continual Learning
An Effective Dynamic Gradient Calibration Method for Continual Learning
Weichen Lin
Jiaxiang Chen
Ru Huang
Huihua Ding
CLL
37
0
0
30 Jul 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
33
0
0
19 Jul 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
34
3
0
07 Mar 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
39
1
0
29 Nov 2023
A Large Deviations Perspective on Policy Gradient Algorithms
A Large Deviations Perspective on Policy Gradient Algorithms
Wouter Jongeneel
Daniel Kuhn
Mengmeng Li
11
1
0
13 Nov 2023
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
15
1
0
09 Nov 2023
Sketch-and-Project Meets Newton Method: Global $\mathcal O(k^{-2})$
  Convergence with Low-Rank Updates
Sketch-and-Project Meets Newton Method: Global O(k−2)\mathcal O(k^{-2})O(k−2) Convergence with Low-Rank Updates
Slavomír Hanzely
15
6
0
22 May 2023
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic
  Composite Optimization
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
Tesi Xiao
Xuxing Chen
Krishnakumar Balasubramanian
Saeed Ghadimi
11
10
0
20 Feb 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
  Correction
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
25
6
0
09 Jan 2023
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
37
10
0
17 Jun 2022
A Statistical Analysis of Polyak-Ruppert Averaged Q-learning
A Statistical Analysis of Polyak-Ruppert Averaged Q-learning
Xiang Li
Wenhao Yang
Jiadong Liang
Zhihua Zhang
Michael I. Jordan
19
15
0
29 Dec 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Simon Lacoste-Julien
13
17
0
18 Feb 2021
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
76
736
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
60
317
0
18 Feb 2014
1