ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01884
  4. Cited By
MetaBox+: A new Region Based Active Learning Method for Semantic
  Segmentation using Priority Maps

MetaBox+: A new Region Based Active Learning Method for Semantic Segmentation using Priority Maps

5 October 2020
Pascal Colling
L. Roese-Koerner
Hanno Gottschalk
Matthias Rottmann
ArXivPDFHTML

Papers citing "MetaBox+: A new Region Based Active Learning Method for Semantic Segmentation using Priority Maps"

11 / 11 papers shown
Title
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
34
0
0
17 Sep 2024
Edge-guided and Class-balanced Active Learning for Semantic Segmentation
  of Aerial Images
Edge-guided and Class-balanced Active Learning for Semantic Segmentation of Aerial Images
Lianlei Shan
Weiqiang Wang
Ke Lv
Bin Luo
VLM
25
0
0
28 May 2024
Correlation-aware active learning for surgery video segmentation
Correlation-aware active learning for surgery video segmentation
Fei Wu
Pablo Márquez-Neila
Mingyi Zheng
Hedyeh Rafii-Tari
Raphael Sznitman
29
3
0
15 Nov 2023
Active Learning for Semantic Segmentation with Multi-class Label Query
Active Learning for Semantic Segmentation with Multi-class Label Query
S. Hwang
Sohyun Lee
Hoyoung Kim
Minhyeon Oh
Jungseul Ok
Suha Kwak
VLM
25
7
0
17 Sep 2023
Uncertainty Quantification and Resource-Demanding Computer Vision
  Applications of Deep Learning
Uncertainty Quantification and Resource-Demanding Computer Vision Applications of Deep Learning
Julian Burghoff
Robin Shing Moon Chan
Hanno Gottschalk
Annika Muetze
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
BDL
21
0
0
30 May 2022
Active Learning for Point Cloud Semantic Segmentation via
  Spatial-Structural Diversity Reasoning
Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning
Feifei Shao
Yawei Luo
Ping Liu
Jie Chen
Yezhou Yang
Yulei Lu
Junhao Xiao
3DPC
24
31
0
25 Feb 2022
An Active and Contrastive Learning Framework for Fine-Grained Off-Road
  Semantic Segmentation
An Active and Contrastive Learning Framework for Fine-Grained Off-Road Semantic Segmentation
Biao Gao
Xijun Zhao
Huijing Zhao
34
12
0
18 Feb 2022
CPRAL: Collaborative Panoptic-Regional Active Learning for Semantic Segmentation
Yu Qiao
Jincheng Zhu
Chengjiang Long
Zeyao Zhang
Yuxin Wang
Z. Du
Xin Yang
35
13
0
11 Dec 2021
False Positive Detection and Prediction Quality Estimation for LiDAR
  Point Cloud Segmentation
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation
Pascal Colling
Matthias Rottmann
L. Roese-Koerner
Hanno Gottschalk
3DPC
22
3
0
29 Oct 2021
Background-Foreground Segmentation for Interior Sensing in Automotive
  Industry
Background-Foreground Segmentation for Interior Sensing in Automotive Industry
Claudia Drygala
Matthias Rottmann
Hanno Gottschalk
Klaus Friedrichs
Thomas Kurbiel
21
2
0
20 Sep 2021
Entropy Maximization and Meta Classification for Out-Of-Distribution
  Detection in Semantic Segmentation
Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Hanno Gottschalk
OODD
25
149
0
09 Dec 2020
1