Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.02114
Cited By
Explaining The Efficacy of Counterfactually Augmented Data
5 October 2020
Divyansh Kaushik
Amrith Rajagopal Setlur
Eduard H. Hovy
Zachary Chase Lipton
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining The Efficacy of Counterfactually Augmented Data"
22 / 22 papers shown
Title
ACCORD: Closing the Commonsense Measurability Gap
François Roewer-Després
Jinyue Feng
Zining Zhu
Frank Rudzicz
LRM
34
0
0
04 Jun 2024
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
S. Saria
David M. Blei
OOD
CML
21
7
0
19 Oct 2023
Out-of-Distribution Generalization in Text Classification: Past, Present, and Future
Linyi Yang
Y. Song
Xuan Ren
Chenyang Lyu
Yidong Wang
Lingqiao Liu
Jindong Wang
Jennifer Foster
Yue Zhang
OOD
20
2
0
23 May 2023
Learning to Generalize for Cross-domain QA
Yingjie Niu
Linyi Yang
Ruihai Dong
Yue Zhang
11
6
0
14 May 2023
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective
Linyi Yang
Shuibai Zhang
Libo Qin
Yafu Li
Yidong Wang
Hanmeng Liu
Jindong Wang
Xingxu Xie
Yue Zhang
ELM
31
79
0
15 Nov 2022
NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer Data Augmentation
Phillip Howard
Gadi Singer
Vasudev Lal
Yejin Choi
Swabha Swayamdipta
CML
50
25
0
22 Oct 2022
Robustifying Sentiment Classification by Maximally Exploiting Few Counterfactuals
Maarten De Raedt
Fréderic Godin
Chris Develder
Thomas Demeester
6
1
0
21 Oct 2022
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
24
116
0
20 Oct 2022
FactMix: Using a Few Labeled In-domain Examples to Generalize to Cross-domain Named Entity Recognition
Linyi Yang
Lifan Yuan
Leyang Cui
Wen Gao
Yue Zhang
16
15
0
24 Aug 2022
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
16
36
0
08 Jun 2022
Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Esma Balkir
I. Nejadgholi
Kathleen C. Fraser
S. Kiritchenko
FAtt
33
27
0
06 May 2022
Informativeness and Invariance: Two Perspectives on Spurious Correlations in Natural Language
Jacob Eisenstein
CML
26
25
0
09 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
29
314
0
06 Apr 2022
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
Jinghui Lu
Linyi Yang
Brian Mac Namee
Yue Zhang
8
39
0
24 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
19
67
0
21 Feb 2022
Making a (Counterfactual) Difference One Rationale at a Time
Michael J. Plyler
Michal Green
Min Chi
16
10
0
13 Jan 2022
An Investigation of the (In)effectiveness of Counterfactually Augmented Data
Nitish Joshi
He He
OODD
19
46
0
01 Jul 2021
On the Efficacy of Adversarial Data Collection for Question Answering: Results from a Large-Scale Randomized Study
Divyansh Kaushik
Douwe Kiela
Zachary Chase Lipton
Wen-tau Yih
AAML
6
36
0
02 Jun 2021
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
OOD
16
91
0
31 May 2021
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
32
796
0
07 May 2021
Hypothesis Only Baselines in Natural Language Inference
Adam Poliak
Jason Naradowsky
Aparajita Haldar
Rachel Rudinger
Benjamin Van Durme
190
576
0
02 May 2018
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
Mohit Iyyer
John Wieting
Kevin Gimpel
Luke Zettlemoyer
AAML
GAN
185
711
0
17 Apr 2018
1