ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02916
  4. Cited By
Reconciling Modern Deep Learning with Traditional Optimization Analyses:
  The Intrinsic Learning Rate

Reconciling Modern Deep Learning with Traditional Optimization Analyses: The Intrinsic Learning Rate

6 October 2020
Zhiyuan Li
Kaifeng Lyu
Sanjeev Arora
ArXivPDFHTML

Papers citing "Reconciling Modern Deep Learning with Traditional Optimization Analyses: The Intrinsic Learning Rate"

17 / 17 papers shown
Title
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
113
0
0
04 Feb 2025
Normalization and effective learning rates in reinforcement learning
Normalization and effective learning rates in reinforcement learning
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
James Martens
H. V. Hasselt
Razvan Pascanu
Will Dabney
19
7
0
01 Jul 2024
Implicit Bias of AdamW: $\ell_\infty$ Norm Constrained Optimization
Implicit Bias of AdamW: ℓ∞\ell_\inftyℓ∞​ Norm Constrained Optimization
Shuo Xie
Zhiyuan Li
OffRL
47
13
0
05 Apr 2024
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin
Ahmed Khaled
Yuanhao Wang
Aaron Defazio
Robert Mansel Gower
44
6
0
06 Mar 2024
Analyzing and Improving the Training Dynamics of Diffusion Models
Analyzing and Improving the Training Dynamics of Diffusion Models
Tero Karras
M. Aittala
J. Lehtinen
Janne Hellsten
Timo Aila
S. Laine
33
155
0
05 Dec 2023
An SDE for Modeling SAM: Theory and Insights
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurelien Lucchi
23
13
0
19 Jan 2023
Toward Equation of Motion for Deep Neural Networks: Continuous-time
  Gradient Descent and Discretization Error Analysis
Toward Equation of Motion for Deep Neural Networks: Continuous-time Gradient Descent and Discretization Error Analysis
Taiki Miyagawa
50
9
0
28 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
27
28
0
17 Jun 2022
Understanding the Generalization Benefit of Normalization Layers:
  Sharpness Reduction
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
37
69
0
14 Jun 2022
Robust Training of Neural Networks Using Scale Invariant Architectures
Robust Training of Neural Networks Using Scale Invariant Architectures
Zhiyuan Li
Srinadh Bhojanapalli
Manzil Zaheer
Sashank J. Reddi
Surinder Kumar
19
27
0
02 Feb 2022
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
  and Anomalous Diffusion
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
How to decay your learning rate
How to decay your learning rate
Aitor Lewkowycz
36
24
0
23 Mar 2021
On the Validity of Modeling SGD with Stochastic Differential Equations
  (SDEs)
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
38
78
0
24 Feb 2021
On the training dynamics of deep networks with $L_2$ regularization
On the training dynamics of deep networks with L2L_2L2​ regularization
Aitor Lewkowycz
Guy Gur-Ari
36
53
0
15 Jun 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
284
2,890
0
15 Sep 2016
1