Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.04050
Cited By
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
8 October 2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A survey of algorithmic recourse: definitions, formulations, solutions, and prospects"
50 / 51 papers shown
Title
Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
Chara Podimata
49
0
0
08 May 2025
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
48
0
0
22 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
85
0
0
06 Feb 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
45
0
0
29 Oct 2024
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
S. Pokutta
26
0
0
21 Oct 2024
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
34
1
0
18 Oct 2024
Counterfactual Explanations for Multivariate Time-Series without Training Datasets
Xiangyu Sun
Raquel Aoki
Kevin H. Wilson
19
1
0
28 May 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Jakub Marecek
TPM
73
0
0
25 Jan 2024
Endogenous Macrodynamics in Algorithmic Recourse
Patrick Altmeyer
Giovan Angela
Aleksander Buszydlik
Karol Dobiczek
A. V. Deursen
Cynthia C. S. Liem
19
7
0
16 Aug 2023
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
31
2
0
14 Aug 2023
Reason to explain: Interactive contrastive explanations (REASONX)
Laura State
Salvatore Ruggieri
Franco Turini
LRM
27
1
0
29 May 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
30
16
0
26 May 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
21
3
0
08 Mar 2023
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
32
8
0
21 Oct 2022
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
Shubham Sharma
Jette Henderson
Joydeep Ghosh
FedML
MoE
21
5
0
10 Oct 2022
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
23
0
0
29 Sep 2022
Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation
Andrew Herren
P. R. Hahn
FAtt
19
9
0
21 Aug 2022
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
42
18
0
31 May 2022
Can counterfactual explanations of AI systems' predictions skew lay users' causal intuitions about the world? If so, can we correct for that?
Marko Tešić
U. Hahn
CML
11
5
0
12 May 2022
Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting
Ulrike Kuhl
André Artelt
Barbara Hammer
32
24
0
11 May 2022
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
25
22
0
21 Apr 2022
Causal Explanations and XAI
Sander Beckers
CML
XAI
13
34
0
31 Jan 2022
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
54
24
0
29 Jan 2022
Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial Contexts
Sebastian Bordt
Michèle Finck
Eric Raidl
U. V. Luxburg
AILaw
26
77
0
25 Jan 2022
Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis
Giovanni De Toni
Bruno Lepri
Andrea Passerini
CML
25
13
0
18 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
43
63
0
21 Dec 2021
Solving the Class Imbalance Problem Using a Counterfactual Method for Data Augmentation
M. Temraz
Markt. Keane
14
42
0
05 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
22
645
0
05 Oct 2021
Multi-Agent Algorithmic Recourse
Andrew O'Brien
Edward J. Kim
26
5
0
01 Oct 2021
Counterfactual Instances Explain Little
Adam White
Artur Garcez
CML
27
5
0
20 Sep 2021
Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects
Julius von Kügelgen
N. Agarwal
Jakob Zeitler
Afsaneh Mastouri
Bernhard Schölkopf
CML
12
2
0
22 Jun 2021
Rational Shapley Values
David S. Watson
15
19
0
18 Jun 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
11
51
0
18 Jun 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
Optimal Counterfactual Explanations in Tree Ensembles
Axel Parmentier
Thibaut Vidal
17
54
0
11 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
21
184
0
15 May 2021
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
15
24
0
12 Apr 2021
Strategic Classification Made Practical
Sagi Levanon
Nir Rosenfeld
34
54
0
02 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
17
108
0
26 Feb 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
237
488
0
31 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
16
119
0
03 Dec 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
27
62
0
11 Sep 2020
Counterfactual Explanations for Machine Learning on Multivariate Time Series Data
E. Ates
Burak Aksar
V. Leung
A. Coskun
AI4TS
43
65
0
25 Aug 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
55
93
0
05 Mar 2020
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
99
44
0
11 Jun 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
227
3,681
0
28 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
1
2
Next