ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07067
  4. Cited By
Machine Learning Force Fields

Machine Learning Force Fields

14 October 2020
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning Force Fields"

27 / 27 papers shown
Title
HMAE: Self-Supervised Few-Shot Learning for Quantum Spin Systems
HMAE: Self-Supervised Few-Shot Learning for Quantum Spin Systems
Ibne Farabi Shihab
Sanjeda Akter
Anuj Sharma
34
0
0
06 May 2025
On Simulating Thin-Film Processes at the Atomic Scale Using Machine Learned Force Fields
On Simulating Thin-Film Processes at the Atomic Scale Using Machine Learned Force Fields
S. Kondati Natarajan
J. Schneider
N. Pandey
J. Wellendorff
S. Smidstrup
AI4CE
28
0
0
02 May 2025
Machine learning interatomic potential can infer electrical response
Machine learning interatomic potential can infer electrical response
Peichen Zhong
Dongjin Kim
Daniel S. King
Bingqing Cheng
26
1
0
07 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
55
4
0
12 Mar 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
91
7
0
16 Dec 2024
Learning Equivariant Non-Local Electron Density Functionals
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
30
3
0
04 Oct 2024
All-in-one foundational models learning across quantum chemical levels
All-in-one foundational models learning across quantum chemical levels
Yuxinxin Chen
Pavlo O. Dral
AI4CE
13
1
0
18 Sep 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
Relaxing Continuous Constraints of Equivariant Graph Neural Networks for
  Physical Dynamics Learning
Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning
Zinan Zheng
Yang Liu
Jia Li
Jianhua Yao
Yu Rong
AI4CE
51
1
0
24 Jun 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
48
5
0
29 May 2024
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
71
2
0
02 Feb 2024
Utilising physics-guided deep learning to overcome data scarcity
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
26
3
0
24 Nov 2022
Learning Pair Potentials using Differentiable Simulations
Learning Pair Potentials using Differentiable Simulations
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
17
23
0
16 Sep 2022
Accelerating discrete dislocation dynamics simulations with graph neural
  networks
Accelerating discrete dislocation dynamics simulations with graph neural networks
N. Bertin
Fei Zhou
AI4CE
18
9
0
05 Aug 2022
SELFIES and the future of molecular string representations
SELFIES and the future of molecular string representations
Mario Krenn
Qianxiang Ai
Senja Barthel
Nessa Carson
Angelo Frei
...
Andrew Wang
Andrew D. White
A. Young
Rose Yu
A. Aspuru‐Guzik
32
147
0
31 Mar 2022
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
28
63
0
21 Dec 2021
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
18
53
0
06 Dec 2021
Equivariant graph neural networks for fast electron density estimation
  of molecules, liquids, and solids
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
16
36
0
01 Dec 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
30
286
0
26 Jul 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
19
47
0
08 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
158
246
0
01 May 2021
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
26
215
0
05 Jun 2020
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
446
0
16 Sep 2019
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1