ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14462
  4. Cited By
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
v1v2 (latest)

Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging

27 October 2020
He Sun
Katherine Bouman
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging"

43 / 43 papers shown
Title
From Pixels to Graphs: using Scene and Knowledge Graphs for HD-EPIC VQA Challenge
Agnese Taluzzi
Davide Gesualdi
Riccardo Santambrogio
Chiara Plizzari
Francesca Palermo
S. Mentasti
Matteo Matteucci
GNN
49
2
0
10 Jun 2025
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Jeffrey Wen
Rizwan Ahmad
Philip Schniter
91
0
0
14 May 2025
Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCVMedIm
88
0
0
10 Apr 2025
Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation
Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation
Tianyu Chen
Yasi Zhang
Ziyi Wang
Ying Nian Wu
Oscar Leong
Mingyuan Zhou
DiffM
155
2
0
10 Mar 2025
pcaGAN: Improving Posterior-Sampling cGANs via Principal Component
  Regularization
pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization
Matthew Bendel
Rizwan Ahmad
P. Schniter
MedImDiffM
82
1
0
01 Nov 2024
Physics and Deep Learning in Computational Wave Imaging
Physics and Deep Learning in Computational Wave Imaging
Youzuo Lin
Shihang Feng
J. Theiler
Yinpeng Chen
Umberto Villa
Jing Rao
John Greenhall
Cristian Pantea
M. Anastasio
B. Wohlberg
63
1
0
10 Oct 2024
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
Hongkai Zheng
Wenda Chu
Austin Wang
Nikola B. Kovachki
Ricardo Baptista
Yisong Yue
103
6
0
30 Sep 2024
Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems
Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems
Gabriel Missael Barco
Alexandre Adam
Connor Stone
Y. Hezaveh
Laurence Perreault Levasseur
OOD
77
4
0
24 Jul 2024
Improving Diffusion Inverse Problem Solving with Decoupled Noise
  Annealing
Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing
Bingliang Zhang
Wenda Chu
Julius Berner
Chenlin Meng
Anima Anandkumar
Yang Song
DiffM
123
46
0
01 Jul 2024
An Expectation-Maximization Algorithm for Training Clean Diffusion
  Models from Corrupted Observations
An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations
Weimin Bai
Yifei Wang
Wenzheng Chen
He Sun
113
11
0
01 Jul 2024
Conditional score-based diffusion models for solving inverse problems in
  mechanics
Conditional score-based diffusion models for solving inverse problems in mechanics
Agnimitra Dasgupta
Harisankar Ramaswamy
Javier Murgoitio-Esandi
Ken Foo
Runze Li
Qifa Zhou
Brendan Kennedy
Assad A. Oberai
DiffMMedIm
103
4
0
19 Jun 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play
  Priors
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine Bouman
DiffM
111
33
0
29 May 2024
ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse
  Problems
ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems
Rafael Orozco
Ali Siahkoohi
M. Louboutin
Felix J. Herrmann
74
2
0
08 May 2024
Universal Functional Regression with Neural Operator Flows
Universal Functional Regression with Neural Operator Flows
Yaozhong Shi
Angela F. Gao
Zachary E. Ross
Kamyar Azizzadenesheli
104
5
0
03 Apr 2024
Invertible Diffusion Models for Compressed Sensing
Invertible Diffusion Models for Compressed Sensing
Bin Chen
Zhenyu Zhang
Weiqi Li
Chen Zhao
Jiwen Yu
Shijie Zhao
Jie Chen
Jian Zhang
DiffM
116
5
0
25 Mar 2024
VisRec: A Semi-Supervised Approach to Radio Interferometric Data
  Reconstruction
VisRec: A Semi-Supervised Approach to Radio Interferometric Data Reconstruction
Ruoqing Wang
Haitao Wang
Qiong Luo
Feng Wang
Hejun Wu
33
0
0
01 Mar 2024
Robustness and Exploration of Variational and Machine Learning
  Approaches to Inverse Problems: An Overview
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
74
0
0
19 Feb 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
83
0
0
05 Feb 2024
On the Quantification of Image Reconstruction Uncertainty without
  Training Data
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
53
1
0
16 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
90
12
0
22 Oct 2023
Provable Probabilistic Imaging using Score-Based Generative Priors
Provable Probabilistic Imaging using Score-Based Generative Priors
Yu Sun
Zihui Wu
Yifan Chen
Berthy Feng
Katherine Bouman
DiffM
103
35
0
16 Oct 2023
Uncertainty Quantification in Inverse Models in Hydrology
Uncertainty Quantification in Inverse Models in Hydrology
Somya Sharma Chatterjee
Rahul Ghosh
Arvind Renganathan
Xiang Li
Snigdhansu Chatterjee
John L. Nieber
Christopher J. Duffy
Vipin Kumar
122
0
0
03 Oct 2023
AmbientFlow: Invertible generative models from incomplete, noisy
  measurements
AmbientFlow: Invertible generative models from incomplete, noisy measurements
Varun A. Kelkar
Rucha Deshpande
Arindam Banerjee
M. Anastasio
DRLMedIm
120
7
0
09 Sep 2023
PolarRec: Radio Interferometric Data Reconstruction with Polar
  Coordinate Representation
PolarRec: Radio Interferometric Data Reconstruction with Polar Coordinate Representation
Ruoqing Wang
Zhu-xue Chen
Jiayi Zhu
Qiong Luo
Feng Wang
58
1
0
28 Aug 2023
Self-Supervised Scalable Deep Compressed Sensing
Self-Supervised Scalable Deep Compressed Sensing
Bin Chen
Xuanyu Zhang
Shuai Liu
Yongbing Zhang
Jian Zhang
66
5
0
26 Aug 2023
Diffusion Models for Image Restoration and Enhancement -- A
  Comprehensive Survey
Diffusion Models for Image Restoration and Enhancement -- A Comprehensive Survey
Xin Li
Yulin Ren
Xin Jin
Cuiling Lan
Xingyu Wang
Wenjun Zeng
Xinchao Wang
Zhibo Chen
104
87
0
18 Aug 2023
A Conditional Denoising Diffusion Probabilistic Model for Radio
  Interferometric Image Reconstruction
A Conditional Denoising Diffusion Probabilistic Model for Radio Interferometric Image Reconstruction
Ruoqing Wang
Zhu-xue Chen
Qiong Luo
Feng Wang
DiffM
60
6
0
16 May 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine Bouman
William T. Freeman
DiffM
176
98
0
23 Apr 2023
Deep Injective Prior for Inverse Scattering
Deep Injective Prior for Inverse Scattering
AmirEhsan Khorashadizadeh
Vahid Khorashadi-Zadeh
Sepehr Eskandari
Guy A. E. Vandenbosch
Ivan Dokmanić
78
7
0
08 Jan 2023
Deep Variational Inverse Scattering
Deep Variational Inverse Scattering
AmirEhsan Khorashadizadeh
A. Aghababaei
Tin Vlavsić
Hieu Nguyen
Ivan Dokmanić
BDLUQCV
78
3
0
08 Dec 2022
Accelerating Inverse Learning via Intelligent Localization with
  Exploratory Sampling
Accelerating Inverse Learning via Intelligent Localization with Exploratory Sampling
Jiaxin Zhang
Sirui Bi
Victor Fung
75
3
0
02 Dec 2022
A Regularized Conditional GAN for Posterior Sampling in Image Recovery
  Problems
A Regularized Conditional GAN for Posterior Sampling in Image Recovery Problems
Matthew Bendel
Rizwan Ahmad
Philip Schniter
MedIm
108
6
0
24 Oct 2022
Probabilistic Inverse Modeling: An Application in Hydrology
Probabilistic Inverse Modeling: An Application in Hydrology
Somya Sharma
Rahul Ghosh
Arvind Renganathan
Xiang Li
Snigdhansu Chatterjee
John L. Nieber
C. Duffy
Vipin Kumar
AI4CE
89
1
0
12 Oct 2022
Uncertainty Quantification for Deep Unrolling-Based Computational
  Imaging
Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
107
12
0
02 Jul 2022
Conditional Injective Flows for Bayesian Imaging
Conditional Injective Flows for Bayesian Imaging
AmirEhsan Khorashadizadeh
K. Kothari
Leonardo Salsi
Ali Aghababaei Harandi
Maarten V. de Hoop
Ivan Dokmanić
MedIm
78
16
0
15 Apr 2022
Mining the manifolds of deep generative models for multiple
  data-consistent solutions of ill-posed tomographic imaging problems
Mining the manifolds of deep generative models for multiple data-consistent solutions of ill-posed tomographic imaging problems
Sayantan Bhadra
Umberto Villa
M. Anastasio
MedIm
82
3
0
10 Feb 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
51
15
0
20 Jan 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDLDiffMAI4CE
94
25
0
24 Nov 2021
Uncertainty quantification for ptychography using normalizing flows
Uncertainty quantification for ptychography using normalizing flows
Agnimitra Dasgupta
Z. Di
AI4CE
69
5
0
01 Nov 2021
Universal Joint Approximation of Manifolds and Densities by Simple
  Injective Flows
Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows
Michael Puthawala
Matti Lassas
Ivan Dokmanić
Maarten V. de Hoop
102
13
0
08 Oct 2021
End-to-End Sequential Sampling and Reconstruction for MRI
End-to-End Sequential Sampling and Reconstruction for MRI
Tianwei Yin
Zihui Wu
He Sun
Adrian Dalca
Yisong Yue
Katherine Bouman
87
20
0
13 May 2021
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
56
50
0
20 Feb 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
109
32
0
11 Jan 2021
1