Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.14658
Cited By
v1
v2 (latest)
Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC
27 October 2020
Arun Ganesh
Kunal Talwar
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC"
29 / 29 papers shown
Title
Rényi-infinity constrained sampling with
d
3
d^3
d
3
membership queries
Yunbum Kook
Matthew Shunshi Zhang
68
1
0
17 Jul 2024
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models
S. Kandasamy
Dheeraj M. Nagaraj
DiffM
71
3
0
27 May 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
106
17
0
18 Jan 2024
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
Volkan Cevher
82
13
0
31 Oct 2023
Differentially Private Statistical Inference through
β
β
β
-Divergence One Posterior Sampling
Jack Jewson
Sahra Ghalebikesabi
Chris Holmes
82
2
0
11 Jul 2023
Differentially Private Topological Data Analysis
Taegyu Kang
Sehwan Kim
Jinwon Sohn
Jordan Awan
81
3
0
05 May 2023
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
Alireza Mousavi-Hosseini
Tyler Farghly
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
122
27
0
07 Mar 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
112
36
0
20 Feb 2023
Improved dimension dependence of a proximal algorithm for sampling
JiaoJiao Fan
Bo Yuan
Yongxin Chen
81
25
0
20 Feb 2023
Improved Discretization Analysis for Underdamped Langevin Monte Carlo
Matthew Shunshi Zhang
Sinho Chewi
Mufan Li
Krishnakumar Balasubramanian
Murat A. Erdogdu
68
35
0
16 Feb 2023
Privacy Risk for anisotropic Langevin dynamics using relative entropy bounds
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
50
1
0
01 Feb 2023
Integer Subspace Differential Privacy
Prathamesh Dharangutte
Jie Gao
Ruobin Gong
Fang-Yi Yu
57
6
0
02 Dec 2022
Convergence of the Inexact Langevin Algorithm and Score-based Generative Models in KL Divergence
Kaylee Yingxi Yang
Andre Wibisono
93
12
0
02 Nov 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
103
25
0
16 Oct 2022
Recycling Scraps: Improving Private Learning by Leveraging Intermediate Checkpoints
Virat Shejwalkar
Arun Ganesh
Rajiv Mathews
Om Thakkar
Abhradeep Thakurta
101
0
0
04 Oct 2022
Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk
Oren Mangoubi
Nisheeth K. Vishnoi
117
2
0
19 Jun 2022
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason M. Altschuler
Kunal Talwar
FedML
146
61
0
27 May 2022
Statistical Data Privacy: A Song of Privacy and Utility
Aleksandra B. Slavkovic
Jeremy Seeman
42
27
0
06 May 2022
Differentially Private Sampling from Rashomon Sets, and the Universality of Langevin Diffusion for Convex Optimization
Arun Ganesh
Abhradeep Thakurta
Jalaj Upadhyay
76
1
0
04 Apr 2022
Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms
Jeremy Seeman
M. Reimherr
Aleksandra B. Slavkovic
81
11
0
03 Apr 2022
One Parameter Defense -- Defending against Data Inference Attacks via Differential Privacy
Dayong Ye
Sheng Shen
Tianqing Zhu
B. Liu
Wanlei Zhou
MIACV
66
65
0
13 Mar 2022
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
141
54
0
01 Mar 2022
Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi
Nisheeth K. Vishnoi
83
15
0
07 Nov 2021
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning?
Guy Heller
Ethan Fetaya
BDL
68
3
0
11 Oct 2021
Privacy-Aware Rejection Sampling
Jordan Awan
Vinayak A. Rao
63
7
0
02 Aug 2021
Differential Privacy Dynamics of Langevin Diffusion and Noisy Gradient Descent
R. Chourasia
Jiayuan Ye
Reza Shokri
FedML
101
71
0
11 Feb 2021
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
105
66
0
23 Dec 2020
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
146
43
0
22 Jul 2020
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
145
269
0
20 Mar 2019
1