ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.16204
  4. Cited By
Capture the Bot: Using Adversarial Examples to Improve CAPTCHA
  Robustness to Bot Attacks

Capture the Bot: Using Adversarial Examples to Improve CAPTCHA Robustness to Bot Attacks

30 October 2020
Dorjan Hitaj
Briland Hitaj
S. Jajodia
L. Mancini
    AAML
ArXivPDFHTML

Papers citing "Capture the Bot: Using Adversarial Examples to Improve CAPTCHA Robustness to Bot Attacks"

12 / 12 papers shown
Title
Minerva: A File-Based Ransomware Detector
Minerva: A File-Based Ransomware Detector
Dorjan Hitaj
Giulio Pagnotta
Fabio De Gaspari
Lorenzo De Carli
L. Mancini
AAML
29
9
0
26 Jan 2023
Adversarial CAPTCHAs
Adversarial CAPTCHAs
Chenghui Shi
Xiaogang Xu
S. Ji
Kai Bu
Jianhai Chen
R. Beyah
Ting Wang
AAML
22
52
0
04 Jan 2019
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
44
1,093
0
27 Dec 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
142
2,712
0
19 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
976
20,692
0
17 Apr 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
450
14,454
0
07 Oct 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
60
1,735
0
24 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
673
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
184
27,191
0
02 Dec 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
107
3,261
0
05 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
367
99,991
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
45
14,831
1
21 Dec 2013
1