ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00050
  4. Cited By
Dataset Meta-Learning from Kernel Ridge-Regression

Dataset Meta-Learning from Kernel Ridge-Regression

30 October 2020
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
    DD
ArXivPDFHTML

Papers citing "Dataset Meta-Learning from Kernel Ridge-Regression"

50 / 167 papers shown
Title
Improved Distribution Matching for Dataset Condensation
Improved Distribution Matching for Dataset Condensation
Ganlong Zhao
Guanbin Li
Yipeng Qin
Yizhou Yu
DD
23
80
0
19 Jul 2023
Towards Trustworthy Dataset Distillation
Towards Trustworthy Dataset Distillation
Shijie Ma
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
DD
37
14
0
18 Jul 2023
Dataset Distillation Meets Provable Subset Selection
Dataset Distillation Meets Provable Subset Selection
M. Tukan
Alaa Maalouf
Margarita Osadchy
DD
31
4
0
16 Jul 2023
Distilled Pruning: Using Synthetic Data to Win the Lottery
Distilled Pruning: Using Synthetic Data to Win the Lottery
Luke McDermott
Daniel Cummings
SyDa
DD
34
1
0
07 Jul 2023
Kernels, Data & Physics
Kernels, Data & Physics
Francesco Cagnetta
Deborah Oliveira
Mahalakshmi Sabanayagam
Nikolaos Tsilivis
Julia Kempe
25
0
0
05 Jul 2023
Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
  Training Data Release for Machine Learning
Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving Training Data Release for Machine Learning
Tamas Madl
Weijie Xu
Olivia Choudhury
Matthew Howard
21
5
0
04 Jul 2023
Large-scale Dataset Pruning with Dynamic Uncertainty
Large-scale Dataset Pruning with Dynamic Uncertainty
Muyang He
Shuo Yang
Tiejun Huang
Bo-Lu Zhao
36
25
0
08 Jun 2023
Structure-free Graph Condensation: From Large-scale Graphs to Condensed
  Graph-free Data
Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data
Xin Zheng
Miao Zhang
C. Chen
Quoc Viet Hung Nguyen
Xingquan Zhu
Shirui Pan
DD
36
59
0
05 Jun 2023
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Tao Feng
Jie Zhang
Peizheng Wang
Zhijie Wang
Shengyuan Pang
DD
46
0
0
29 May 2023
Distill Gold from Massive Ores: Efficient Dataset Distillation via
  Critical Samples Selection
Distill Gold from Massive Ores: Efficient Dataset Distillation via Critical Samples Selection
Yue Xu
Yong-Lu Li
Kaitong Cui
Ziyu Wang
Cewu Lu
Yu-Wing Tai
Chi-Keung Tang
DD
33
8
0
28 May 2023
Summarizing Stream Data for Memory-Constrained Online Continual Learning
Summarizing Stream Data for Memory-Constrained Online Continual Learning
Jianyang Gu
Kai Wang
Wei Jiang
Yang You
DD
24
9
0
26 May 2023
On the Size and Approximation Error of Distilled Sets
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
4
0
23 May 2023
A Comprehensive Study on Dataset Distillation: Performance, Privacy,
  Robustness and Fairness
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
24
9
0
05 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future
  Directions
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
57
26
0
03 May 2023
Generalizing Dataset Distillation via Deep Generative Prior
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
91
84
0
02 May 2023
Bayesian Pseudo-Coresets via Contrastive Divergence
Bayesian Pseudo-Coresets via Contrastive Divergence
Piyush Tiwary
Kumar Shubham
V. Kashyap
Prathosh A.P.
21
3
0
20 Mar 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of
  Examples
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
15
11
0
09 Mar 2023
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
Ziheng Qin
K. Wang
Zangwei Zheng
Jianyang Gu
Xiang Peng
...
Daquan Zhou
Lei Shang
Baigui Sun
Xuansong Xie
Yang You
116
46
0
08 Mar 2023
DiM: Distilling Dataset into Generative Model
DiM: Distilling Dataset into Generative Model
Kai Wang
Jianyang Gu
Daquan Zhou
Zheng Hua Zhu
Wei Jiang
Yang You
DD
51
40
0
08 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
DREAM: Efficient Dataset Distillation by Representative Matching
DREAM: Efficient Dataset Distillation by Representative Matching
Yanqing Liu
Jianyang Gu
Kai Wang
Zheng Hua Zhu
Wei Jiang
Yang You
DD
31
76
0
28 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and
  Dataset Distillation
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
34
5
0
02 Feb 2023
Differentially Private Kernel Inducing Points using features from
  ScatterNets (DP-KIP-ScatterNet) for Privacy Preserving Data Distillation
Differentially Private Kernel Inducing Points using features from ScatterNets (DP-KIP-ScatterNet) for Privacy Preserving Data Distillation
Margarita Vinaroz
M. Park
DD
20
0
0
31 Jan 2023
Probabilistic Bilevel Coreset Selection
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
25
27
0
24 Jan 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
41
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
34
27
0
03 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo-Lu Zhao
Caiwen Ding
Y. Li
Dongkuan Xu
DD
40
62
0
12 Dec 2022
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated
  Classification
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated Classification
Alan Q. Wang
M. Sabuncu
30
5
0
07 Dec 2022
Minimizing the Accumulated Trajectory Error to Improve Dataset
  Distillation
Minimizing the Accumulated Trajectory Error to Improve Dataset Distillation
Jiawei Du
Yiding Jiang
Vincent Y. F. Tan
Joey Tianyi Zhou
Haizhou Li
DD
35
109
0
20 Nov 2022
Towards Robust Dataset Learning
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
41
10
0
19 Nov 2022
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
20
129
0
19 Nov 2022
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
11
4
0
04 Nov 2022
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
126
141
0
30 Oct 2022
Efficient Dataset Distillation Using Random Feature Approximation
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
69
95
0
21 Oct 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
31
47
0
13 Oct 2022
On Divergence Measures for Bayesian Pseudocoresets
On Divergence Measures for Bayesian Pseudocoresets
Balhae Kim
J. Choi
Seanie Lee
Yoonho Lee
Jung-Woo Ha
Juho Lee
DD
8
11
0
12 Oct 2022
Few-shot Backdoor Attacks via Neural Tangent Kernels
Few-shot Backdoor Attacks via Neural Tangent Kernels
J. Hayase
Sewoong Oh
30
21
0
12 Oct 2022
Fast Neural Kernel Embeddings for General Activations
Fast Neural Kernel Embeddings for General Activations
Insu Han
A. Zandieh
Jaehoon Lee
Roman Novak
Lechao Xiao
Amin Karbasi
48
18
0
09 Sep 2022
Federated Learning via Decentralized Dataset Distillation in
  Resource-Constrained Edge Environments
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
DD
FedML
23
61
0
24 Aug 2022
Dataset Condensation with Latent Space Knowledge Factorization and
  Sharing
Dataset Condensation with Latent Space Knowledge Factorization and Sharing
Haebeom Lee
Dong Bok Lee
Sung Ju Hwang
DD
21
37
0
21 Aug 2022
Delving into Effective Gradient Matching for Dataset Condensation
Delving into Effective Gradient Matching for Dataset Condensation
Zixuan Jiang
Jiaqi Gu
Mingjie Liu
D. Pan
DD
20
41
0
30 Jul 2022
Can we achieve robustness from data alone?
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
84
35
0
24 Jul 2022
FedDM: Iterative Distribution Matching for Communication-Efficient
  Federated Learning
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
47
82
0
20 Jul 2022
DC-BENCH: Dataset Condensation Benchmark
DC-BENCH: Dataset Condensation Benchmark
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
31
72
0
20 Jul 2022
A Fast, Well-Founded Approximation to the Empirical Neural Tangent
  Kernel
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
AAML
29
27
0
25 Jun 2022
Fast Finite Width Neural Tangent Kernel
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
18
52
0
17 Jun 2022
Previous
1234
Next