Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.02084
Cited By
Understanding Capacity-Driven Scale-Out Neural Recommendation Inference
4 November 2020
Michael Lui
Yavuz Yetim
Özgür Özkan
Zhuoran Zhao
Shin-Yeh Tsai
Carole-Jean Wu
Mark Hempstead
GNN
BDL
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Capacity-Driven Scale-Out Neural Recommendation Inference"
35 / 35 papers shown
Title
RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection
Tomomasa Yamasaki
Zhehui Wang
Tao Luo
Niangjun Chen
Bo Wang
32
0
0
26 Mar 2025
Pushing the Performance Envelope of DNN-based Recommendation Systems Inference on GPUs
Rishabh Jain
Vivek M. Bhasi
Adwait Jog
A. Sivasubramaniam
M. Kandemir
Chita R. Das
21
2
0
29 Oct 2024
The Unseen AI Disruptions for Power Grids: LLM-Induced Transients
Yuzhuo Li
Mariam Mughees
Yize Chen
Yunwei Ryan Li
20
9
0
09 Sep 2024
CADC: Encoding User-Item Interactions for Compressing Recommendation Model Training Data
Hossein Entezari Zarch
Abdulla Alshabanah
Chaoyi Jiang
Murali Annavaram
23
1
0
11 Jul 2024
ElasticRec: A Microservice-based Model Serving Architecture Enabling Elastic Resource Scaling for Recommendation Models
Yujeong Choi
Jiin Kim
Minsoo Rhu
32
1
0
11 Jun 2024
Towards Universal Performance Modeling for Machine Learning Training on Multi-GPU Platforms
Zhongyi Lin
Ning Sun
Pallab Bhattacharya
Xizhou Feng
Louis Feng
John Douglas Owens
32
1
0
19 Apr 2024
Evaluating and Enhancing Robustness of Deep Recommendation Systems Against Hardware Errors
Dongning Ma
Xun Jiao
Fred Lin
Mengshi Zhang
Alban Desmaison
Thomas Sellinger
Daniel Moore
Sriram Sankar
19
2
0
17 Jul 2023
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models
Daochen Zha
Louis Feng
Liangchen Luo
Bhargav Bhushanam
Zirui Liu
...
J. McMahon
Yuzhen Huang
Bryan Clarke
A. Kejariwal
Xia Hu
50
7
0
03 May 2023
Hera: A Heterogeneity-Aware Multi-Tenant Inference Server for Personalized Recommendations
Yujeong Choi
John Kim
Minsoo Rhu
13
1
0
23 Feb 2023
MP-Rec: Hardware-Software Co-Design to Enable Multi-Path Recommendation
Samuel Hsia
Udit Gupta
Bilge Acun
Newsha Ardalani
Pan Zhong
Gu-Yeon Wei
David Brooks
Carole-Jean Wu
33
17
0
21 Feb 2023
FlexShard: Flexible Sharding for Industry-Scale Sequence Recommendation Models
Geet Sethi
Pallab Bhattacharya
Dhruv Choudhary
Carole-Jean Wu
Christos Kozyrakis
11
5
0
08 Jan 2023
Data Leakage via Access Patterns of Sparse Features in Deep Learning-based Recommendation Systems
H. Hashemi
Wenjie Xiong
Liu Ke
Kiwan Maeng
M. Annavaram
G. E. Suh
Hsien-Hsin S. Lee
21
6
0
12 Dec 2022
DisaggRec: Architecting Disaggregated Systems for Large-Scale Personalized Recommendation
Liu Ke
Xuan Zhang
Benjamin C. Lee
G. E. Suh
Hsien-Hsin S. Lee
41
8
0
02 Dec 2022
A GPU-specialized Inference Parameter Server for Large-Scale Deep Recommendation Models
Yingcan Wei
Matthias Langer
F. Yu
Minseok Lee
Kingsley Liu
Ji Shi
Zehuan Wang
BDL
24
17
0
17 Oct 2022
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
15
28
0
05 Oct 2022
A Comprehensive Survey on Trustworthy Recommender Systems
Wenqi Fan
Xiangyu Zhao
Xiao Chen
Jingran Su
Jingtong Gao
...
Qidong Liu
Yiqi Wang
Hanfeng Xu
Lei Chen
Qing Li
FaML
40
46
0
21 Sep 2022
Understanding Scaling Laws for Recommendation Models
Newsha Ardalani
Carole-Jean Wu
Zeliang Chen
Bhargav Bhushanam
Adnan Aziz
29
28
0
17 Aug 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
9
5
0
07 Jun 2022
Training Personalized Recommendation Systems from (GPU) Scratch: Look Forward not Backwards
Youngeun Kwon
Minsoo Rhu
16
27
0
10 May 2022
A Survey of Multi-Tenant Deep Learning Inference on GPU
Fuxun Yu
Di Wang
Longfei Shangguan
Minjia Zhang
Chenchen Liu
Xiang Chen
BDL
AI4CE
11
32
0
17 Mar 2022
RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
47
66
0
25 Jan 2022
A Survey of Large-Scale Deep Learning Serving System Optimization: Challenges and Opportunities
Fuxun Yu
Di Wang
Longfei Shangguan
Minjia Zhang
Xulong Tang
Chenchen Liu
Xiang Chen
21
9
0
28 Nov 2021
Sustainable AI: Environmental Implications, Challenges and Opportunities
Carole-Jean Wu
Ramya Raghavendra
Udit Gupta
Bilge Acun
Newsha Ardalani
...
Maximilian Balandat
Joe Spisak
R. Jain
Michael G. Rabbat
K. Hazelwood
40
380
0
30 Oct 2021
Supporting Massive DLRM Inference Through Software Defined Memory
E. K. Ardestani
Changkyu Kim
Seung Jae Lee
Luoshang Pan
Valmiki Rampersad
...
Krishnakumar Nair
Maxim Naumov
Christopher Peterson
M. Smelyanskiy
Vijay Rao
BDL
31
20
0
21 Oct 2021
Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale
Zhaoxia Deng
Deng
Jongsoo Park
P. T. P. Tang
Haixin Liu
...
S. Nadathur
Changkyu Kim
Maxim Naumov
S. Naghshineh
M. Smelyanskiy
15
11
0
26 May 2021
RecPipe: Co-designing Models and Hardware to Jointly Optimize Recommendation Quality and Performance
Udit Gupta
Samuel Hsia
J. Zhang
Mark Wilkening
Javin Pombra
Hsien-Hsin S. Lee
Gu-Yeon Wei
Carole-Jean Wu
David Brooks
36
32
0
18 May 2021
ECRM: Efficient Fault Tolerance for Recommendation Model Training via Erasure Coding
Kaige Liu
J. Kosaian
K. V. Rashmi
17
4
0
05 Apr 2021
RecSSD: Near Data Processing for Solid State Drive Based Recommendation Inference
Mark Wilkening
Udit Gupta
Samuel Hsia
Caroline Trippel
Carole-Jean Wu
David Brooks
Gu-Yeon Wei
12
114
0
29 Jan 2021
TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models
Chunxing Yin
Bilge Acun
Xing Liu
Carole-Jean Wu
28
102
0
25 Jan 2021
Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
Bilge Acun
Matthew Murphy
Xiaodong Wang
Jade Nie
Carole-Jean Wu
K. Hazelwood
12
109
0
11 Nov 2020
CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery
Kiwan Maeng
Shivam Bharuka
Isabel Gao
M. C. Jeffrey
V. Saraph
...
Caroline Trippel
Jiyan Yang
Michael G. Rabbat
Brandon Lucia
Carole-Jean Wu
OffRL
11
31
0
05 Nov 2020
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
41
83
0
20 Mar 2020
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
Weijie Zhao
Deping Xie
Ronglai Jia
Yulei Qian
Rui Ding
Mingming Sun
P. Li
MoE
57
150
0
12 Mar 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
231
4,469
0
23 Jan 2020
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing
Liu Ke
Udit Gupta
Carole-Jean Wu
B. Cho
Mark Hempstead
...
Dheevatsa Mudigere
Maxim Naumov
Martin D. Schatz
M. Smelyanskiy
Xiaodong Wang
41
213
0
30 Dec 2019
1