ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03321
  4. Cited By
Understanding Double Descent Requires a Fine-Grained Bias-Variance
  Decomposition

Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition

4 November 2020
Ben Adlam
Jeffrey Pennington
    UD
ArXivPDFHTML

Papers citing "Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition"

18 / 18 papers shown
Title
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
Arjun Subramonian
Elvis Dohmatob
24
0
0
14 Apr 2025
Analysis of Overparameterization in Continual Learning under a Linear Model
Analysis of Overparameterization in Continual Learning under a Linear Model
Daniel Goldfarb
Paul Hand
CLL
39
0
0
11 Feb 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
61
1
0
04 Feb 2025
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
45
1
0
18 Apr 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Edgar Dobriban
MLT
34
19
0
11 Oct 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
21
1
0
08 Jun 2023
Generalized equivalences between subsampling and ridge regularization
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
24
5
0
29 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
16
11
0
25 Apr 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Edgar Dobriban
Hamed Hassani
21
8
0
31 Jan 2023
Gradient flow in the gaussian covariate model: exact solution of
  learning curves and multiple descent structures
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
Regularization-wise double descent: Why it occurs and how to eliminate
  it
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
25
11
0
03 Jun 2022
Generalization Through The Lens Of Leave-One-Out Error
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurélien Lucchi
46
7
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
36
59
0
14 Feb 2022
Understanding the bias-variance tradeoff of Bregman divergences
Understanding the bias-variance tradeoff of Bregman divergences
Ben Adlam
Neha Gupta
Zelda E. Mariet
Jamie Smith
UQCV
UD
17
6
0
08 Feb 2022
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
34
172
0
23 Apr 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy
  Regime
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
1