Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.03623
Cited By
Feature Removal Is a Unifying Principle for Model Explanation Methods
6 November 2020
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Feature Removal Is a Unifying Principle for Model Explanation Methods"
20 / 20 papers shown
Title
CAGE: Causality-Aware Shapley Value for Global Explanations
Nils Ole Breuer
Andreas Sauter
Majid Mohammadi
Erman Acar
FAtt
29
2
0
17 Apr 2024
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
23
4
0
01 Nov 2023
Faithful Knowledge Graph Explanations for Commonsense Reasoning
Weihe Zhai
A. Zubiaga
17
0
0
07 Oct 2023
On the Connection between Game-Theoretic Feature Attributions and Counterfactual Explanations
Emanuele Albini
Shubham Sharma
Saumitra Mishra
Danial Dervovic
Daniele Magazzeni
FAtt
38
2
0
13 Jul 2023
Prototype-Based Interpretability for Legal Citation Prediction
Chunyan Luo
R. Bhambhoria
Samuel Dahan
Xiao-Dan Zhu
ELM
AILaw
11
7
0
25 May 2023
Explanations of Black-Box Models based on Directional Feature Interactions
A. Masoomi
Davin Hill
Zhonghui Xu
C. Hersh
E. Silverman
P. Castaldi
Stratis Ioannidis
Jennifer Dy
FAtt
21
17
0
16 Apr 2023
Contrastive Video Question Answering via Video Graph Transformer
Junbin Xiao
Pan Zhou
Angela Yao
Yicong Li
Richang Hong
Shuicheng Yan
Tat-Seng Chua
ViT
19
35
0
27 Feb 2023
Boundary-Aware Uncertainty for Feature Attribution Explainers
Davin Hill
A. Masoomi
Max Torop
S. Ghimire
Jennifer Dy
FAtt
55
3
0
05 Oct 2022
How explainable are adversarially-robust CNNs?
Mehdi Nourelahi
Lars Kotthoff
Peijie Chen
Anh Totti Nguyen
AAML
FAtt
14
8
0
25 May 2022
Reinforced Causal Explainer for Graph Neural Networks
Xiang Wang
Y. Wu
An Zhang
Fuli Feng
Xiangnan He
Tat-Seng Chua
CML
17
46
0
23 Apr 2022
Explainability in Music Recommender Systems
Darius Afchar
Alessandro B. Melchiorre
Markus Schedl
Romain Hennequin
Elena V. Epure
Manuel Moussallam
16
48
0
25 Jan 2022
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAtt
CML
12
14
0
21 Jan 2022
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
Thang M. Pham
Trung H. Bui
Long Mai
Anh Totti Nguyen
21
7
0
22 Oct 2021
Shapley variable importance clouds for interpretable machine learning
Yilin Ning
M. Ong
Bibhas Chakraborty
B. Goldstein
Daniel Ting
Roger Vaughan
Nan Liu
FAtt
11
69
0
06 Oct 2021
Attribution of Predictive Uncertainties in Classification Models
Iker Perez
Piotr Skalski
Alec E. Barns-Graham
Jason Wong
David Sutton
UQCV
14
5
0
19 Jul 2021
The effectiveness of feature attribution methods and its correlation with automatic evaluation scores
Giang Nguyen
Daeyoung Kim
Anh Totti Nguyen
FAtt
8
86
0
31 May 2021
Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN?
J. Ren
Zhanpeng Zhou
Qirui Chen
Quanshi Zhang
FAtt
TDI
19
8
0
22 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
29
20
0
26 Apr 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
78
70
0
02 Mar 2021
PredDiff: Explanations and Interactions from Conditional Expectations
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
FAtt
17
19
0
26 Feb 2021
1