ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.04798
  4. Cited By
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE

Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE

9 November 2020
Ding Zhou
Xue-Xin Wei
    DRL
ArXiv (abs)PDFHTML

Papers citing "Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE"

39 / 39 papers shown
Title
POCO: Scalable Neural Forecasting through Population Conditioning
POCO: Scalable Neural Forecasting through Population Conditioning
Yu Duan
Hamza Tahir Chaudhry
Misha B. Ahrens
Christopher D Harvey
Matthew G Perich
Karl Deisseroth
Kanaka Rajan
AI4CE
10
0
0
17 Jun 2025
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
186
1
0
17 Apr 2025
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
Chengrui Li
Yunmiao Wang
Yule Wang
Weihan Li
Dieter Jaeger
Anqi Wu
CoGeDRL
134
1
0
04 Feb 2025
ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks
ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks
Junyan Li
Bin Hu
Z. Guan
182
0
0
30 Jan 2025
Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data
Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data
Jordi Abante
Angelo Piga
Berta Ros
Clara F López-León
Josep Canals
Jordi Soriano
SyDa
105
0
0
24 Jan 2025
Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
Finn Schmidt
Suhas Shrinivasan
Polina Turishcheva
Fabian H. Sinz
169
1
0
21 Oct 2024
Exploring Behavior-Relevant and Disentangled Neural Dynamics with
  Generative Diffusion Models
Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models
Yule Wang
Chengrui Li
Weihan Li
Anqi Wu
DiffM
90
6
0
12 Oct 2024
BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
Zhengrui Guo
F. Zhou
Wei Wu
Qichen Sun
Lishuang Feng
Jinzhuo Wang
Hao Chen
88
2
0
02 Oct 2024
Graph-Based Representation Learning of Neuronal Dynamics and Behavior
Graph-Based Representation Learning of Neuronal Dynamics and Behavior
M. Khajehnejad
Forough Habibollahi
Ahmad Khajehnejad
Chris French
Brett J. Kagan
Adeel Razi
89
1
0
01 Oct 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffMSyDa
71
1
0
30 Jul 2024
NeuroBind: Towards Unified Multimodal Representations for Neural Signals
NeuroBind: Towards Unified Multimodal Representations for Neural Signals
Fengyu Yang
Chao Feng
Daniel Wang
Tianye Wang
Ziyao Zeng
...
Hyoungseob Park
Pengliang Ji
Han Zhao
Yuanning Li
Alex Wong
110
9
0
19 Jul 2024
Isometric Representation Learning for Disentangled Latent Space of
  Diffusion Models
Isometric Representation Learning for Disentangled Latent Space of Diffusion Models
Jaehoon Hahm
Junho Lee
Sunghyun Kim
Joonseok Lee
DiffM
76
11
0
16 Jul 2024
Latent Diffusion for Neural Spiking Data
Latent Diffusion for Neural Spiking Data
J. Kapoor
Auguste Schulz
Julius Vetter
Felix Pei
Richard Gao
Jakob H. Macke
DiffM
59
3
0
27 Jun 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
563
7
0
24 Jun 2024
Shaping History: Advanced Machine Learning Techniques for the Analysis
  and Dating of Cuneiform Tablets over Three Millennia
Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia
Danielle Kapon
Michael Fire
S. Gordin
107
1
0
06 Jun 2024
A theory of neural emulators
A theory of neural emulators
C. Mitelut
60
0
0
22 May 2024
Predictive variational autoencoder for learning robust representations
  of time-series data
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CMLOODAI4TS
75
2
0
12 Dec 2023
Neuroformer: Multimodal and Multitask Generative Pretraining for Brain
  Data
Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data
Antonis Antoniades
Yiyi Yu
Joseph Canzano
William Wang
Spencer L. Smith
AI4CE
107
13
0
31 Oct 2023
Multi-modal Gaussian Process Variational Autoencoders for Neural and
  Behavioral Data
Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data
Rabia Gondur
Usama Bin Sikandar
Evan Schaffer
Mikio C. Aoi
Stephen L. Keeley
DRL
47
9
0
04 Oct 2023
Learning multi-modal generative models with permutation-invariant
  encoders and tighter variational bounds
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
71
0
0
01 Sep 2023
Neural Latent Aligner: Cross-trial Alignment for Learning
  Representations of Complex, Naturalistic Neural Data
Neural Latent Aligner: Cross-trial Alignment for Learning Representations of Complex, Naturalistic Neural Data
Cheol Jun Cho
Edward F. Chang
Gopala K. Anumanchipalli
71
7
0
12 Aug 2023
Temporal Conditioning Spiking Latent Variable Models of the Neural
  Response to Natural Visual Scenes
Temporal Conditioning Spiking Latent Variable Models of the Neural Response to Natural Visual Scenes
Gehua (Marcus) Ma
Runhao Jiang
Rui Yan
Huajin Tang
AI4TS
72
7
0
21 Jun 2023
Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics
  Alignment with Diffusion Models
Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics Alignment with Diffusion Models
Yule Wang
Zijing Wu
Chengrui Li
Anqi Wu
DiffM
111
12
0
09 Jun 2023
Interpretable statistical representations of neural population dynamics
  and geometry
Interpretable statistical representations of neural population dynamics and geometry
Adam Gosztolai
Robert L. Peach
Alexis Arnaudon
Mauricio Barahona
P. Vandergheynst
66
10
0
06 Apr 2023
Nonlinear Independent Component Analysis for Principled Disentanglement
  in Unsupervised Deep Learning
Nonlinear Independent Component Analysis for Principled Disentanglement in Unsupervised Deep Learning
Aapo Hyvarinen
Ilyes Khemakhem
H. Morioka
CMLOOD
106
37
0
29 Mar 2023
Concept Algebra for (Score-Based) Text-Controlled Generative Models
Concept Algebra for (Score-Based) Text-Controlled Generative Models
Zihao Wang
Lin Gui
Jeffrey Negrea
Victor Veitch
CoGeDiffM
88
41
0
07 Feb 2023
Integrating Multimodal Data for Joint Generative Modeling of Complex
  Dynamics
Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics
Manuela Brenner
Florian Hess
G. Koppe
Daniel Durstewitz
278
11
0
15 Dec 2022
Understanding Neural Coding on Latent Manifolds by Sharing Features and
  Dividing Ensembles
Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles
Martin Bjerke
Lukas Schott
Kristopher T. Jensen
Claudia Battistin
David A. Klindt
Benjamin A. Dunn
68
7
0
06 Oct 2022
Fair Inference for Discrete Latent Variable Models
Fair Inference for Discrete Latent Variable Models
Rashidul Islam
Shimei Pan
James R. Foulds
FaML
82
1
0
15 Sep 2022
Indeterminacy in Generative Models: Characterization and Strong
  Identifiability
Indeterminacy in Generative Models: Characterization and Strong Identifiability
Quanhan Xi
Benjamin Bloem-Reddy
90
27
0
02 Jun 2022
Learnable latent embeddings for joint behavioral and neural analysis
Learnable latent embeddings for joint behavioral and neural analysis
Steffen Schneider
Jin Hwa Lee
Mackenzie W. Mathis
121
231
0
01 Apr 2022
Covariate-informed Representation Learning to Prevent Posterior Collapse
  of iVAE
Covariate-informed Representation Learning to Prevent Posterior Collapse of iVAE
Young-geun Kim
Yang Liu
Xue Wei
OODCML
83
1
0
09 Feb 2022
Reproducible, incremental representation learning with Rosetta VAE
Reproducible, incremental representation learning with Rosetta VAE
Miles Martinez
John M. Pearson
DRL
23
1
0
13 Jan 2022
Drop, Swap, and Generate: A Self-Supervised Approach for Generating
  Neural Activity
Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity
Ran Liu
Mehdi Azabou
M. Dabagia
Chi-Heng Lin
M. G. Azar
Keith B. Hengen
Michal Valko
Eva L. Dyer
OCLSSLDRL
61
37
0
03 Nov 2021
Identifiable Deep Generative Models via Sparse Decoding
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
107
49
0
20 Oct 2021
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
296
90
0
09 Sep 2021
Disentangling Identifiable Features from Noisy Data with Structured
  Nonlinear ICA
Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA
Hermanni Hälvä
Sylvain Le Corff
Luc Lehéricy
Jonathan So
Yongjie Zhu
Elisabeth Gassiat
Aapo Hyvarinen
CML
62
65
0
17 Jun 2021
Mine Your Own vieW: Self-Supervised Learning Through Across-Sample
  Prediction
Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Mehdi Azabou
M. G. Azar
Ran Liu
Chi-Heng Lin
Erik C. Johnson
...
Lindsey Kitchell
Keith B. Hengen
William R. Gray Roncal
Michal Valko
Eva L. Dyer
AI4TS
85
57
0
19 Feb 2021
Building population models for large-scale neural recordings:
  opportunities and pitfalls
Building population models for large-scale neural recordings: opportunities and pitfalls
C. Hurwitz
N. Kudryashova
A. Onken
Matthias H Hennig
73
39
0
03 Feb 2021
1