Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.05429
Cited By
Debugging Tests for Model Explanations
10 November 2020
Julius Adebayo
M. Muelly
Ilaria Liccardi
Been Kim
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Debugging Tests for Model Explanations"
41 / 41 papers shown
Title
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
34
2
0
03 Jan 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
45
0
0
29 Oct 2024
Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector
Xianren Zhang
Dongwon Lee
Suhang Wang
VLM
FAtt
42
3
0
27 Jul 2024
DEPICT: Diffusion-Enabled Permutation Importance for Image Classification Tasks
Sarah Jabbour
Gregory Kondas
Ella Kazerooni
Michael Sjoding
David Fouhey
Jenna Wiens
FAtt
DiffM
44
1
0
19 Jul 2024
What Sketch Explainability Really Means for Downstream Tasks
Hmrishav Bandyopadhyay
Pinaki Nath Chowdhury
A. Bhunia
Aneeshan Sain
Tao Xiang
Yi-Zhe Song
30
4
0
14 Mar 2024
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
...
Michael Gerovitch
David Bau
Max Tegmark
David M. Krueger
Dylan Hadfield-Menell
AAML
20
76
0
25 Jan 2024
SCAAT: Improving Neural Network Interpretability via Saliency Constrained Adaptive Adversarial Training
Rui Xu
Wenkang Qin
Peixiang Huang
Hao Wang
Lin Luo
FAtt
AAML
28
2
0
09 Nov 2023
FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
AAML
32
32
0
11 Aug 2023
Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition
Xiao-lan Wu
P. Bell
A. Rajan
19
5
0
29 May 2023
UFO: A unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations for CNNs
V. V. Ramaswamy
Sunnie S. Y. Kim
Ruth C. Fong
Olga Russakovsky
27
0
0
27 Mar 2023
Perceptual Pat: A Virtual Human System for Iterative Visualization Design
Sungbok Shin
San Hong
Niklas Elmqvist
8
8
0
12 Mar 2023
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
21
17
0
16 Dec 2022
Tensions Between the Proxies of Human Values in AI
Teresa Datta
D. Nissani
Max Cembalest
Akash Khanna
Haley Massa
John P. Dickerson
28
2
0
14 Dec 2022
XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models
Dong-Ho Lee
Akshen Kadakia
Brihi Joshi
Aaron Chan
Ziyi Liu
...
Takashi Shibuya
Ryosuke Mitani
Toshiyuki Sekiya
Jay Pujara
Xiang Ren
LRM
40
9
0
30 Oct 2022
Domain Classification-based Source-specific Term Penalization for Domain Adaptation in Hate-speech Detection
Tulika Bose
Nikolaos Aletras
Irina Illina
Dominique Fohr
11
0
0
18 Sep 2022
Unit Testing for Concepts in Neural Networks
Charles Lovering
Ellie Pavlick
23
28
0
28 Jul 2022
An Interpretability Evaluation Benchmark for Pre-trained Language Models
Ya-Ming Shen
Lijie Wang
Ying Chen
Xinyan Xiao
Jing Liu
Hua-Hong Wu
29
4
0
28 Jul 2022
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
Giang Nguyen
Mohammad Reza Taesiri
Anh Totti Nguyen
30
42
0
26 Jul 2022
Auditing Visualizations: Transparency Methods Struggle to Detect Anomalous Behavior
Jean-Stanislas Denain
Jacob Steinhardt
AAML
31
7
0
27 Jun 2022
Towards ML Methods for Biodiversity: A Novel Wild Bee Dataset and Evaluations of XAI Methods for ML-Assisted Rare Species Annotations
Teodor Chiaburu
F. Biessmann
Frank Haußer
30
2
0
15 Jun 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
20
24
0
05 Jun 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making
Max Schemmer
Patrick Hemmer
Maximilian Nitsche
Niklas Kühl
Michael Vossing
19
55
0
10 May 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
24
14
0
25 Apr 2022
Dynamically Refined Regularization for Improving Cross-corpora Hate Speech Detection
Tulika Bose
Nikolaos Aletras
Irina Illina
Dominique Fohr
40
5
0
23 Mar 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Improving Deep Learning Interpretability by Saliency Guided Training
Aya Abdelsalam Ismail
H. C. Bravo
S. Feizi
FAtt
16
79
0
29 Nov 2021
Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining
Andreas Madsen
Nicholas Meade
Vaibhav Adlakha
Siva Reddy
96
35
0
15 Oct 2021
Jointly Attacking Graph Neural Network and its Explanations
Wenqi Fan
Wei Jin
Xiaorui Liu
Han Xu
Xianfeng Tang
Suhang Wang
Qing Li
Jiliang Tang
Jianping Wang
Charu C. Aggarwal
AAML
37
28
0
07 Aug 2021
Characterizing the risk of fairwashing
Ulrich Aivodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
18
27
0
14 Jun 2021
3DB: A Framework for Debugging Computer Vision Models
Guillaume Leclerc
Hadi Salman
Andrew Ilyas
Sai H. Vemprala
Logan Engstrom
...
Pengchuan Zhang
Shibani Santurkar
Greg Yang
Ashish Kapoor
A. Madry
38
40
0
07 Jun 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
A. Madry
FAtt
20
88
0
11 May 2021
Explanation-Based Human Debugging of NLP Models: A Survey
Piyawat Lertvittayakumjorn
Francesca Toni
LRM
35
79
0
30 Apr 2021
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
22
132
0
27 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
28
25
0
20 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
32
111
0
11 Jun 2020
The Grammar of Interactive Explanatory Model Analysis
Hubert Baniecki
Dariusz Parzych
P. Biecek
18
44
0
01 May 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
149
0
16 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
242
3,681
0
28 Feb 2017
1