Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.09588
Cited By
v1
v2
v3
v4 (latest)
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
18 November 2020
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification"
50 / 56 papers shown
Title
Individualised Counterfactual Examples Using Conformal Prediction Intervals
James M. Adams
Gesine Reinert
Lukasz Szpruch
Carsten Maple
Andrew Elliott
32
0
0
28 May 2025
Adapting GT2-FLS for Uncertainty Quantification: A Blueprint Calibration Strategy
Yusuf Guven
T. Kumbasar
86
0
0
09 Apr 2025
Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions
Farhad Pourkamali-Anaraki
OOD
UQCV
123
0
0
16 Mar 2025
Explainable Bayesian deep learning through input-skip Latent Binary Bayesian Neural Networks
Eirik Høyheim
Lars Skaaret-Lund
Solve Sæbø
A. Hubin
UQCV
BDL
98
0
0
13 Mar 2025
Forecasting Local Ionospheric Parameters Using Transformers
D. J. Alford-Lago
C. Curtis
Alexander T. Ihler
Katherine A. Zawdie
Douglas P. Drob
90
0
0
24 Feb 2025
Tube Loss: A Novel Approach for Prediction Interval Estimation and probabilistic forecasting
Pritam Anand
Tathagata Bandyopadhyay
Suresh Chandra
118
2
0
08 Dec 2024
GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
Dingyi Zhuang
Chonghe Jiang
Yunhan Zheng
Shenhao Wang
Jinhua Zhao
UQCV
137
0
0
12 Oct 2024
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
Dingyi Zhuang
Yuheng Bu
Guang Wang
Shenhao Wang
Jinhua Zhao
BDL
80
1
0
13 Sep 2024
Towards certifiable AI in aviation: landscape, challenges, and opportunities
Hymalai Bello
Daniel Geißler
L. Ray
Stefan Muller-Divéky
Peter Muller
Shannon Kittrell
Mengxi Liu
Bo Zhou
Paul Lukowicz
85
1
0
13 Sep 2024
Beyond the Norms: Detecting Prediction Errors in Regression Models
A. Altieri
Marco Romanelli
Georg Pichler
F. Alberge
Pablo Piantanida
85
0
0
11 Jun 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
470
3
0
05 Jun 2024
Conformal Depression Prediction
Yonghong Li
Shan Qu
Xiuzhuang Zhou
76
2
0
29 May 2024
HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models
R. Sukthanker
Arber Zela
B. Staffler
Aaron Klein
Lennart Purucker
Jorg K. H. Franke
Frank Hutter
ELM
103
4
0
16 May 2024
A Hybrid Probabilistic Battery Health Management Approach for Robust Inspection Drone Operations
Jokin Alcibar
J. Aizpurua
E. Zugasti
Oier Penagarikano
55
1
0
24 Apr 2024
Probabilistic Calibration by Design for Neural Network Regression
Victor Dheur
Souhaib Ben Taieb
187
4
0
18 Mar 2024
Density-Regression: Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts
H. Bui
Anqi Liu
OOD
BDL
UQCV
192
4
0
07 Mar 2024
Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning
Alex C. Stutts
Danilo Erricolo
Theja Tulabandhula
A. R. Trivedi
EDL
UQCV
92
0
0
11 Feb 2024
Calibrated Uncertainty Quantification for Operator Learning via Conformal Prediction
Ziqi Ma
Kamyar Azizzadenesheli
A. Anandkumar
83
8
0
02 Feb 2024
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Tomoharu Iwata
Atsutoshi Kumagai
BDL
UQCV
78
1
0
13 Dec 2023
Calibration in Machine Learning Uncertainty Quantification: beyond consistency to target adaptivity
Pascal Pernot
78
11
0
12 Sep 2023
Benchmarks and Custom Package for Electrical Load Forecasting
Zhixian Wang
Qingsong Wen
Chaoli Zhang
Liang Sun
Leandro Von Krannichfeldt
Yi Wang
AI4TS
85
4
0
14 Jul 2023
Understanding Pathologies of Deep Heteroskedastic Regression
Eliot Wong-Toi
Alex Boyd
Vincent Fortuin
Stephan Mandt
UQCV
69
3
0
29 Jun 2023
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Victor Dheur
Souhaib Ben Taieb
BDL
185
14
0
05 Jun 2023
Calibrating Multimodal Learning
Huanrong Zhang
Changqing Zhang
Bing Wu
Huazhu Fu
Qiufeng Wang
Q. Hu
100
21
0
02 Jun 2023
Parity Calibration
Youngseog Chung
Aaron M. Rumack
Chirag Gupta
83
2
0
29 May 2023
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Shang Liu
Zhongze Cai
Xiaocheng Li
43
4
0
20 May 2023
QuantProb: Generalizing Probabilities along with Predictions for a Pre-trained Classifier
Aditya Challa
Snehanshu Saha
S. Dhavala
UQCV
74
2
0
25 Apr 2023
Conformalized Unconditional Quantile Regression
Ahmed Alaa
Zeshan Hussain
David Sontag
79
9
0
04 Apr 2023
Uncertainty Propagation in Node Classification
Zhao Xu
Carolin (Haas) Lawrence
Ammar Shaker
Raman Siarheyeu
BDL
UQCV
138
2
0
03 Apr 2023
Adaptive Modeling of Uncertainties for Traffic Forecasting
Ying Wu
Yongchao Ye
Adnan Zeb
James Jianqiao Yu
Ziyi Wang
AI4TS
91
7
0
16 Mar 2023
Validation of uncertainty quantification metrics: a primer based on the consistency and adaptivity concepts
P. Pernot
86
6
0
13 Mar 2023
Lightweight, Uncertainty-Aware Conformalized Visual Odometry
Alex C. Stutts
Danilo Erricolo
Theja Tulabandhula
A. R. Trivedi
UQCV
110
11
0
03 Mar 2023
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Uddeshya Upadhyay
Jae Myung Kim
Cordelia Schmidt
Bernhard Schölkopf
Zeynep Akata
BDL
UQCV
93
1
0
21 Feb 2023
How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
66
12
0
07 Feb 2023
ProbPNN: Enhancing Deep Probabilistic Forecasting with Statistical Information
Benedikt Heidrich
Kaleb Phipps
Oliver Neumann
Marian Turowski
Ralf Mikut
V. Hagenmeyer
AI4TS
BDL
61
2
0
06 Feb 2023
Clarifying Trust of Materials Property Predictions using Neural Networks with Distribution-Specific Uncertainty Quantification
Cameron J Gruich
Varun Madhavan
Yixin Wang
B. Goldsmith
54
11
0
06 Feb 2023
Improving Uncertainty Quantification of Variance Networks by Tree-Structured Learning
Wenxuan Ma
Xing Yan
Kun Zhang
UQCV
66
0
0
24 Dec 2022
Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction for Uncertainty Quantification
Xing Yan
Yonghua Su
Wenxuan Ma
UQCV
95
2
0
26 Nov 2022
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao
Paul Pu Liang
Umang Bhatt
Willie Neiswanger
Ruslan Salakhutdinov
Louis-Philippe Morency
253
98
0
10 Oct 2022
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Willie Neiswanger
Lantao Yu
Shengjia Zhao
Chenlin Meng
Stefano Ermon
UQCV
97
11
0
04 Oct 2022
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
109
3
0
23 Sep 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
105
23
0
14 Jul 2022
Counterbalancing Teacher: Regularizing Batch Normalized Models for Robustness
Saeid Asgari Taghanaki
A. Gholami
Fereshte Khani
Kristy Choi
Linh-Tam Tran
Ran Zhang
Aliasghar Khani
70
0
0
04 Jul 2022
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
89
8
0
04 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
104
36
0
29 Jun 2022
Modular Conformal Calibration
Charles Marx
Shengjia Zhao
Willie Neiswanger
Stefano Ermon
66
16
0
23 Jun 2022
Achieving Risk Control in Online Learning Settings
Shai Feldman
Liran Ringel
Stephen Bates
Yaniv Romano
157
30
0
18 May 2022
Better Uncertainty Calibration via Proper Scores for Classification and Beyond
Sebastian G. Gruber
Florian Buettner
UQCV
83
50
0
15 Mar 2022
Classifier Calibration: A survey on how to assess and improve predicted class probabilities
Telmo de Menezes e Silva Filho
Hao Song
Miquel Perelló Nieto
Raúl Santos-Rodríguez
Meelis Kull
Peter A. Flach
186
85
0
20 Dec 2021
Calibrated Multiple-Output Quantile Regression with Representation Learning
Shai Feldman
Stephen Bates
Yaniv Romano
210
36
0
02 Oct 2021
1
2
Next