ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09588
  4. Cited By
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
  Quantification
v1v2v3v4 (latest)

Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification

18 November 2020
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification"

6 / 56 papers shown
Title
$f$-Cal: Calibrated aleatoric uncertainty estimation from neural
  networks for robot perception
fff-Cal: Calibrated aleatoric uncertainty estimation from neural networks for robot perception
Dhaivat Bhatt
Kaustubh Mani
Dishank Bansal
Krishna Murthy Jatavallabhula
Hanju Lee
Liam Paull
UQCV
93
5
0
28 Sep 2021
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
93
72
0
21 Sep 2021
MultiBench: Multiscale Benchmarks for Multimodal Representation Learning
MultiBench: Multiscale Benchmarks for Multimodal Representation Learning
Paul Pu Liang
Yiwei Lyu
Xiang Fan
Zetian Wu
Yun Cheng
...
Peter Wu
Michelle A. Lee
Yuke Zhu
Ruslan Salakhutdinov
Louis-Philippe Morency
VLM
111
172
0
15 Jul 2021
How to Evaluate Uncertainty Estimates in Machine Learning for
  Regression?
How to Evaluate Uncertainty Estimates in Machine Learning for Regression?
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
75
24
0
07 Jun 2021
Improving Conditional Coverage via Orthogonal Quantile Regression
Improving Conditional Coverage via Orthogonal Quantile Regression
Shai Feldman
Stephen Bates
Yaniv Romano
121
43
0
01 Jun 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PERUQLMUQCVUD
321
94
0
16 Feb 2021
Previous
12