ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00901
  4. Cited By
Deep Multi-Fidelity Active Learning of High-dimensional Outputs

Deep Multi-Fidelity Active Learning of High-dimensional Outputs

2 December 2020
Shibo Li
Robert M. Kirby
Shandian Zhe
    AI4CE
ArXivPDFHTML

Papers citing "Deep Multi-Fidelity Active Learning of High-dimensional Outputs"

5 / 5 papers shown
Title
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
42
0
0
15 Oct 2024
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
Zheng Wang
Shibo Li
Shikai Fang
Shandian Zhe
DiffM
AI4CE
16
1
0
09 Nov 2023
Infinite-Fidelity Coregionalization for Physical Simulation
Infinite-Fidelity Coregionalization for Physical Simulation
Shibo Li
Zihan Wang
Robert M. Kirby
Shandian Zhe
AI4CE
26
6
0
01 Jul 2022
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1