ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01696
  4. Cited By
FairBatch: Batch Selection for Model Fairness

FairBatch: Batch Selection for Model Fairness

3 December 2020
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
    VLM
ArXivPDFHTML

Papers citing "FairBatch: Batch Selection for Model Fairness"

24 / 74 papers shown
Title
A Differentiable Distance Approximation for Fairer Image Classification
A Differentiable Distance Approximation for Fairer Image Classification
Nicholas Rosa
Tom Drummond
Mehrtash Harandi
28
0
0
09 Oct 2022
Survey on Fairness Notions and Related Tensions
Survey on Fairness Notions and Related Tensions
Guilherme Alves
Fabien Bernier
Miguel Couceiro
K. Makhlouf
C. Palamidessi
Sami Zhioua
FaML
46
25
0
16 Sep 2022
FedDAR: Federated Domain-Aware Representation Learning
FedDAR: Federated Domain-Aware Representation Learning
Aoxiao Zhong
Hao He
Zhaolin Ren
Na Li
Quanzheng Li
OOD
AI4CE
54
10
0
08 Sep 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
38
162
0
14 Jul 2022
Input-agnostic Certified Group Fairness via Gaussian Parameter Smoothing
Input-agnostic Certified Group Fairness via Gaussian Parameter Smoothing
Jiayin Jin
Zeru Zhang
Yang Zhou
Lingfei Wu
32
13
0
22 Jun 2022
FairGrad: Fairness Aware Gradient Descent
FairGrad: Fairness Aware Gradient Descent
Gaurav Maheshwari
Michaël Perrot
FaML
49
11
0
22 Jun 2022
LIFT: Language-Interfaced Fine-Tuning for Non-Language Machine Learning
  Tasks
LIFT: Language-Interfaced Fine-Tuning for Non-Language Machine Learning Tasks
Tuan Dinh
Yuchen Zeng
Ruisu Zhang
Ziqian Lin
Michael Gira
Shashank Rajput
Jy-yong Sohn
Dimitris Papailiopoulos
Kangwook Lee
LMTD
55
128
0
14 Jun 2022
Metrizing Fairness
Metrizing Fairness
Yves Rychener
Bahar Taşkesen
Daniel Kuhn
FaML
49
4
0
30 May 2022
Tackling Provably Hard Representative Selection via Graph Neural
  Networks
Tackling Provably Hard Representative Selection via Graph Neural Networks
Seyed Mehran Kazemi
Anton Tsitsulin
Hossein Esfandiari
M. Bateni
Deepak Ramachandran
Bryan Perozzi
Vahab Mirrokni
31
2
0
20 May 2022
Optimising Equal Opportunity Fairness in Model Training
Optimising Equal Opportunity Fairness in Model Training
Aili Shen
Xudong Han
Trevor Cohn
Timothy Baldwin
Lea Frermann
FaML
32
28
0
05 May 2022
fairlib: A Unified Framework for Assessing and Improving Classification
  Fairness
fairlib: A Unified Framework for Assessing and Improving Classification Fairness
Xudong Han
Aili Shen
Yitong Li
Lea Frermann
Timothy Baldwin
Trevor Cohn
VLM
FaML
31
12
0
04 May 2022
Breaking Fair Binary Classification with Optimal Flipping Attacks
Breaking Fair Binary Classification with Optimal Flipping Attacks
Changhun Jo
Jy-yong Sohn
Kangwook Lee
FaML
30
7
0
12 Apr 2022
Fair Federated Learning via Bounded Group Loss
Fair Federated Learning via Bounded Group Loss
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FaML
FedML
29
14
0
18 Mar 2022
FORML: Learning to Reweight Data for Fairness
FORML: Learning to Reweight Data for Fairness
Bobby Yan
Skyler Seto
N. Apostoloff
FaML
29
11
0
03 Feb 2022
GALAXY: Graph-based Active Learning at the Extreme
GALAXY: Graph-based Active Learning at the Extreme
Jifan Zhang
Julian Katz-Samuels
Robert D. Nowak
32
31
0
03 Feb 2022
Anatomizing Bias in Facial Analysis
Anatomizing Bias in Facial Analysis
Richa Singh
P. Majumdar
S. Mittal
Mayank Vatsa
CVBM
35
23
0
13 Dec 2021
Data Collection and Quality Challenges in Deep Learning: A Data-Centric
  AI Perspective
Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective
Steven Euijong Whang
Yuji Roh
Hwanjun Song
Jae-Gil Lee
29
326
0
13 Dec 2021
Modeling Techniques for Machine Learning Fairness: A Survey
Modeling Techniques for Machine Learning Fairness: A Survey
Mingyang Wan
Daochen Zha
Ninghao Liu
Na Zou
SyDa
FaML
37
36
0
04 Nov 2021
Improving Fairness via Federated Learning
Improving Fairness via Federated Learning
Yuchen Zeng
Hongxu Chen
Kangwook Lee
FedML
24
60
0
29 Oct 2021
Sample Selection for Fair and Robust Training
Sample Selection for Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
21
61
0
27 Oct 2021
FairFed: Enabling Group Fairness in Federated Learning
FairFed: Enabling Group Fairness in Federated Learning
Yahya H. Ezzeldin
Shen Yan
Chaoyang He
Emilio Ferrara
A. Avestimehr
FedML
33
197
0
02 Oct 2021
Fair Machine Learning under Limited Demographically Labeled Data
Fair Machine Learning under Limited Demographically Labeled Data
Mustafa Safa Ozdayi
Murat Kantarcioglu
Rishabh K. Iyer
FaML
23
3
0
03 Jun 2021
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
37
616
0
04 Oct 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
312
2,896
0
15 Sep 2016
Previous
12