Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.03058
Cited By
BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations
5 December 2020
Xingyu Zhao
Wei Huang
Xiaowei Huang
Valentin Robu
David Flynn
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations"
19 / 19 papers shown
Title
ExplainReduce: Summarising local explanations via proxies
Lauri Seppäläinen
Mudong Guo
Kai Puolamäki
FAtt
57
0
0
17 Feb 2025
Embedding and Extraction of Knowledge in Tree Ensemble Classifiers
Wei Huang
Xingyu Zhao
Xiaowei Huang
AAML
34
11
0
16 Oct 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
51
95
0
22 Sep 2020
Assessing Safety-Critical Systems from Operational Testing: A Study on Autonomous Vehicles
Xingyu Zhao
K. Salako
L. Strigini
Valentin Robu
David Flynn
26
40
0
19 Aug 2020
A Modified Perturbed Sampling Method for Local Interpretable Model-agnostic Explanation
Sheng Shi
Xinfeng Zhang
Wei Fan
FAtt
19
28
0
18 Feb 2020
ALIME: Autoencoder Based Approach for Local Interpretability
Sharath M. Shankaranarayana
D. Runje
FAtt
7
103
0
04 Sep 2019
DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems
Muhammad Rehman Zafar
N. Khan
FAtt
60
154
0
24 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
66
1,825
0
06 May 2019
Probabilistic Model Checking of Robots Deployed in Extreme Environments
Xingyu Zhao
Valentin Robu
David Flynn
F. Dinmohammadi
Michael Fisher
M. Webster
17
40
0
10 Dec 2018
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
BDL
16
47
0
07 Nov 2018
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
67
196
0
09 Jul 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
524
0
21 Jun 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
58
80
0
19 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
89
1,159
0
19 Jun 2018
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
57
2,274
0
30 Oct 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
139
19,796
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
133
16,765
0
16 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
218
27,231
0
02 Dec 2015
Convolutional Neural Networks at Constrained Time Cost
Kaiming He
Jian Sun
3DV
51
1,291
0
04 Dec 2014
1