ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03058
  4. Cited By
BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations

BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations

5 December 2020
Xingyu Zhao
Wei Huang
Xiaowei Huang
Valentin Robu
David Flynn
    FAtt
ArXivPDFHTML

Papers citing "BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations"

19 / 19 papers shown
Title
ExplainReduce: Summarising local explanations via proxies
ExplainReduce: Summarising local explanations via proxies
Lauri Seppäläinen
Mudong Guo
Kai Puolamäki
FAtt
57
0
0
17 Feb 2025
Embedding and Extraction of Knowledge in Tree Ensemble Classifiers
Embedding and Extraction of Knowledge in Tree Ensemble Classifiers
Wei Huang
Xingyu Zhao
Xiaowei Huang
AAML
34
11
0
16 Oct 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI)
  Interpretability through Neural Backdoors
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
51
95
0
22 Sep 2020
Assessing Safety-Critical Systems from Operational Testing: A Study on
  Autonomous Vehicles
Assessing Safety-Critical Systems from Operational Testing: A Study on Autonomous Vehicles
Xingyu Zhao
K. Salako
L. Strigini
Valentin Robu
David Flynn
26
40
0
19 Aug 2020
A Modified Perturbed Sampling Method for Local Interpretable
  Model-agnostic Explanation
A Modified Perturbed Sampling Method for Local Interpretable Model-agnostic Explanation
Sheng Shi
Xinfeng Zhang
Wei Fan
FAtt
19
28
0
18 Feb 2020
ALIME: Autoencoder Based Approach for Local Interpretability
ALIME: Autoencoder Based Approach for Local Interpretability
Sharath M. Shankaranarayana
D. Runje
FAtt
7
103
0
04 Sep 2019
DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations
  Approach for Computer-Aided Diagnosis Systems
DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems
Muhammad Rehman Zafar
N. Khan
FAtt
60
154
0
24 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
66
1,825
0
06 May 2019
Probabilistic Model Checking of Robots Deployed in Extreme Environments
Probabilistic Model Checking of Robots Deployed in Extreme Environments
Xingyu Zhao
Valentin Robu
David Flynn
F. Dinmohammadi
Michael Fisher
M. Webster
17
40
0
10 Dec 2018
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
BDL
16
47
0
07 Nov 2018
Model Agnostic Supervised Local Explanations
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
67
196
0
09 Jul 2018
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
524
0
21 Jun 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
58
80
0
19 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
89
1,159
0
19 Jun 2018
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
57
2,274
0
30 Oct 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
139
19,796
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
133
16,765
0
16 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
218
27,231
0
02 Dec 2015
Convolutional Neural Networks at Constrained Time Cost
Convolutional Neural Networks at Constrained Time Cost
Kaiming He
Jian Sun
3DV
51
1,291
0
04 Dec 2014
1