Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.03133
Cited By
Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
5 December 2020
Pengzhan Jin
Zhen Zhang
Ioannis G. Kevrekidis
George Karniadakis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks"
21 / 21 papers shown
Title
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
70
8
0
21 Jun 2021
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
88
130
0
26 Oct 2020
Nonseparable Symplectic Neural Networks
S. Xiong
Yunjin Tong
Xingzhe He
Shuqi Yang
Cheng Yang
Bo Zhu
104
34
0
23 Oct 2020
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
76
31
0
10 Jun 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
157
79
0
11 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
180
438
0
10 Mar 2020
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
92
399
0
09 Oct 2019
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
79
218
0
30 Sep 2019
Equivariant Hamiltonian Flows
Danilo Jimenez Rezende
S. Racanière
I. Higgins
Peter Toth
80
64
0
30 Sep 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
104
179
0
27 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
112
271
0
26 Sep 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
139
899
0
04 Jun 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
472
5,176
0
19 Jun 2018
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
M. Raissi
P. Perdikaris
George Karniadakis
PINN
156
266
0
04 Jan 2018
Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Yiping Lu
Aoxiao Zhong
Quanzheng Li
Bin Dong
217
505
0
27 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
97
264
0
12 Sep 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
159
735
0
09 May 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,501
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
146
2,269
0
30 Oct 2014
1