Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.04030
Cited By
Statistical Mechanics of Deep Linear Neural Networks: The Back-Propagating Kernel Renormalization
7 December 2020
Qianyi Li
H. Sompolinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Statistical Mechanics of Deep Linear Neural Networks: The Back-Propagating Kernel Renormalization"
19 / 19 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
109
0
0
06 May 2025
Deep Neural Nets as Hamiltonians
Mike Winer
Boris Hanin
130
0
0
31 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
64
1
0
04 Feb 2025
Exact full-RSB SAT/UNSAT transition in infinitely wide two-layer neural networks
B. Annesi
Enrico M. Malatesta
Francesco Zamponi
38
2
0
09 Oct 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
42
6
0
24 May 2024
A Short Review on Novel Approaches for Maximum Clique Problem: from Classical algorithms to Graph Neural Networks and Quantum algorithms
Raffaele Marino
L. Buffoni
Bogdan Zavalnij
GNN
37
5
0
13 Mar 2024
Grokking as a First Order Phase Transition in Two Layer Networks
Noa Rubin
Inbar Seroussi
Z. Ringel
37
15
0
05 Oct 2023
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
60
8
0
08 Sep 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
23
11
0
12 Jul 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
41
0
0
24 Mar 2023
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
48
2
0
04 Dec 2022
Globally Gated Deep Linear Networks
Qianyi Li
H. Sompolinsky
AI4CE
14
10
0
31 Oct 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
29
79
0
19 May 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
30
50
0
31 Dec 2021
Unified field theoretical approach to deep and recurrent neuronal networks
Kai Segadlo
Bastian Epping
Alexander van Meegen
David Dahmen
Michael Krämer
M. Helias
AI4CE
BDL
28
20
0
10 Dec 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
C. Pehlevan
BDL
UQCV
MDE
36
8
0
23 Nov 2021
1