Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.05640
Cited By
Asymptotic study of stochastic adaptive algorithm in non-convex landscape
10 December 2020
S. Gadat
Ioana Gavra
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asymptotic study of stochastic adaptive algorithm in non-convex landscape"
17 / 17 papers shown
Title
An Energy-Based Self-Adaptive Learning Rate for Stochastic Gradient Descent: Enhancing Unconstrained Optimization with VAV method
Jiahao Zhang
Christian Moya
Guang Lin
48
0
0
10 Nov 2024
Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions
Devyani Maladkar
Ruichen Jiang
Aryan Mokhtari
54
6
0
07 Jun 2024
Why Transformers Need Adam: A Hessian Perspective
Yushun Zhang
Congliang Chen
Tian Ding
Ziniu Li
Ruoyu Sun
Zhimin Luo
40
43
0
26 Feb 2024
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni
Nicklas Werge
ODL
45
3
0
29 Nov 2023
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
30
9
0
20 Jul 2023
Convergence of AdaGrad for Non-convex Objectives: Simple Proofs and Relaxed Assumptions
Bo Wang
Huishuai Zhang
Zhirui Ma
Wei Chen
42
51
0
29 May 2023
Convergence of Adam Under Relaxed Assumptions
Haochuan Li
Alexander Rakhlin
Ali Jadbabaie
39
57
0
27 Apr 2023
Non asymptotic analysis of Adaptive stochastic gradient algorithms and applications
Antoine Godichon-Baggioni
Pierre Tarrago
35
5
0
01 Mar 2023
Provable Adaptivity of Adam under Non-uniform Smoothness
Bohan Wang
Yushun Zhang
Huishuai Zhang
Qi Meng
Ruoyu Sun
Zhirui Ma
Tie-Yan Liu
Zhimin Luo
Wei Chen
32
25
0
21 Aug 2022
Adam Can Converge Without Any Modification On Update Rules
Yushun Zhang
Congliang Chen
Naichen Shi
Ruoyu Sun
Zhimin Luo
23
63
0
20 Aug 2022
The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded Gradients and Affine Variance
Matthew Faw
Isidoros Tziotis
Constantine Caramanis
Aryan Mokhtari
Sanjay Shakkottai
Rachel A. Ward
35
60
0
11 Feb 2022
On the Convergence of mSGD and AdaGrad for Stochastic Optimization
Ruinan Jin
Yu Xing
Xingkang He
24
11
0
26 Jan 2022
A theoretical and empirical study of new adaptive algorithms with additional momentum steps and shifted updates for stochastic non-convex optimization
C. Alecsa
38
0
0
16 Oct 2021
Stochastic Subgradient Descent on a Generic Definable Function Converges to a Minimizer
S. Schechtman
35
1
0
06 Sep 2021
Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance
Anas Barakat
Pascal Bianchi
W. Hachem
S. Schechtman
39
13
0
07 Dec 2020
First-order Methods Almost Always Avoid Saddle Points
Jason D. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
97
83
0
20 Oct 2017
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
110
1,157
0
04 Mar 2015
1