ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07421
  4. Cited By
WILDS: A Benchmark of in-the-Wild Distribution Shifts

WILDS: A Benchmark of in-the-Wild Distribution Shifts

14 December 2020
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
Akshay Balsubramani
Weihua Hu
Michihiro Yasunaga
Richard Lanas Phillips
Irena Gao
Tony Lee
Etiene David
Ian Stavness
Wei Guo
Berton A. Earnshaw
I. Haque
Sara Beery
J. Leskovec
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
    OOD
ArXivPDFHTML

Papers citing "WILDS: A Benchmark of in-the-Wild Distribution Shifts"

50 / 232 papers shown
Title
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
UQCV
9
35
0
28 Nov 2022
Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt
Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt
Zhichao Yang
Sunjae Kwon
Zonghai Yao
Hongfeng Yu
13
17
0
24 Nov 2022
Delving into Out-of-Distribution Detection with Vision-Language
  Representations
Delving into Out-of-Distribution Detection with Vision-Language Representations
Yifei Ming
Ziyan Cai
Jiuxiang Gu
Yiyou Sun
W. Li
Yixuan Li
VLM
OODD
13
157
0
24 Nov 2022
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
19
22
0
23 Nov 2022
GLUE-X: Evaluating Natural Language Understanding Models from an
  Out-of-distribution Generalization Perspective
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective
Linyi Yang
Shuibai Zhang
Libo Qin
Yafu Li
Yidong Wang
Hanmeng Liu
Jindong Wang
Xingxu Xie
Yue Zhang
ELM
22
79
0
15 Nov 2022
Striving for data-model efficiency: Identifying data externalities on
  group performance
Striving for data-model efficiency: Identifying data externalities on group performance
Esther Rolf
Ben Packer
Alex Beutel
Fernando Diaz
TDI
16
2
0
11 Nov 2022
Distributional Shift Adaptation using Domain-Specific Features
Distributional Shift Adaptation using Domain-Specific Features
Anique Tahir
Lu Cheng
Ruocheng Guo
Huan Liu
VLM
TTA
OOD
OODD
15
2
0
09 Nov 2022
Okapi: Generalising Better by Making Statistical Matches Match
Okapi: Generalising Better by Making Statistical Matches Match
Myles Bartlett
Sara Romiti
V. Sharmanska
Novi Quadrianto
26
3
0
07 Nov 2022
GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior
  Modeling Generalization
GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization
Xuhai Xu
Han Zhang
Yasaman S. Sefidgar
Yiyi Ren
Xin Liu
...
Tim Althoff
Margaret E. Morris
E. Riskin
Jennifer Mankoff
A. Dey
30
38
0
04 Nov 2022
The future is different: Large pre-trained language models fail in
  prediction tasks
The future is different: Large pre-trained language models fail in prediction tasks
K. Cvejoski
Ramses J. Sanchez
C. Ojeda
17
3
0
01 Nov 2022
Useful Confidence Measures: Beyond the Max Score
Useful Confidence Measures: Beyond the Max Score
G. Yona
Amir Feder
Itay Laish
79
5
0
25 Oct 2022
Sufficient Invariant Learning for Distribution Shift
Sufficient Invariant Learning for Distribution Shift
Taero Kim
Sungjun Lim
Kyungwoo Song
OOD
13
2
0
24 Oct 2022
NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer
  Data Augmentation
NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer Data Augmentation
Phillip Howard
Gadi Singer
Vasudev Lal
Yejin Choi
Swabha Swayamdipta
CML
48
25
0
22 Oct 2022
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Yoonho Lee
Annie S. Chen
Fahim Tajwar
Ananya Kumar
Huaxiu Yao
Percy Liang
Chelsea Finn
OOD
47
197
0
20 Oct 2022
On Feature Learning in the Presence of Spurious Correlations
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
21
116
0
20 Oct 2022
lo-fi: distributed fine-tuning without communication
lo-fi: distributed fine-tuning without communication
Mitchell Wortsman
Suchin Gururangan
Shen Li
Ali Farhadi
Ludwig Schmidt
Michael G. Rabbat
Ari S. Morcos
19
24
0
19 Oct 2022
On Learning Fairness and Accuracy on Multiple Subgroups
On Learning Fairness and Accuracy on Multiple Subgroups
Changjian Shui
Gezheng Xu
Qi Chen
Jiaqi Li
Charles X. Ling
Tal Arbel
Boyu Wang
Christian Gagné
37
37
0
19 Oct 2022
Towards Explaining Distribution Shifts
Towards Explaining Distribution Shifts
Sean Kulinski
David I. Inouye
OffRL
FAtt
22
23
0
19 Oct 2022
Towards Understanding GD with Hard and Conjugate Pseudo-labels for
  Test-Time Adaptation
Towards Understanding GD with Hard and Conjugate Pseudo-labels for Test-Time Adaptation
Jun-Kun Wang
Andre Wibisono
19
7
0
18 Oct 2022
Evaluating Out-of-Distribution Performance on Document Image Classifiers
Evaluating Out-of-Distribution Performance on Document Image Classifiers
Stefan Larson
Gordon Lim
Yutong Ai
David Kuang
Kevin Leach
OODD
OOD
24
18
0
14 Oct 2022
Neurosymbolic Programming for Science
Neurosymbolic Programming for Science
Jennifer J. Sun
Megan Tjandrasuwita
Atharva Sehgal
Armando Solar-Lezama
Swarat Chaudhuri
Yisong Yue
Omar Costilla-Reyes
NAI
32
12
0
10 Oct 2022
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Stefan Smeu
Elena Burceanu
Andrei Liviu Nicolicioiu
Emanuela Haller
16
4
0
06 Oct 2022
MIXCODE: Enhancing Code Classification by Mixup-Based Data Augmentation
MIXCODE: Enhancing Code Classification by Mixup-Based Data Augmentation
Zeming Dong
Qiang Hu
Yuejun Guo
Maxime Cordy
Mike Papadakis
Zhenya Zhang
Yves Le Traon
Jianjun Zhao
18
8
0
06 Oct 2022
Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in
  Neural Networks
Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks
Sravanti Addepalli
Anshul Nasery
R. Venkatesh Babu
Praneeth Netrapalli
Prateek Jain
AAML
21
3
0
04 Oct 2022
Fairness Reprogramming
Fairness Reprogramming
Guanhua Zhang
Yihua Zhang
Yang Zhang
Wenqi Fan
Qing Li
Sijia Liu
Shiyu Chang
AAML
78
38
0
21 Sep 2022
UMIX: Improving Importance Weighting for Subpopulation Shift via
  Uncertainty-Aware Mixup
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
Yatao Bian
P. Zhao
Bing Wu
Changqing Zhang
Jianhua Yao
48
34
0
19 Sep 2022
A crowdsourced dataset of aerial images with annotated solar
  photovoltaic arrays and installation metadata
A crowdsourced dataset of aerial images with annotated solar photovoltaic arrays and installation metadata
Gabriel Kasmi
Yves-Marie Saint Drenan
David Trebosc
Raphael Jolivet
J. Leloux
Babacar Sarr
L. Dubus
105
42
0
08 Sep 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
16
16
0
25 Aug 2022
Shortcut Learning of Large Language Models in Natural Language
  Understanding
Shortcut Learning of Large Language Models in Natural Language Understanding
Mengnan Du
Fengxiang He
Na Zou
Dacheng Tao
Xia Hu
KELM
OffRL
19
82
0
25 Aug 2022
Artifact-Based Domain Generalization of Skin Lesion Models
Artifact-Based Domain Generalization of Skin Lesion Models
Alceu Bissoto
Catarina Barata
Eduardo Valle
Sandra Avila
MedIm
AI4CE
28
13
0
20 Aug 2022
Conformal Inference for Online Prediction with Arbitrary Distribution
  Shifts
Conformal Inference for Online Prediction with Arbitrary Distribution Shifts
Isaac Gibbs
Emmanuel Candès
23
84
0
17 Aug 2022
Quality Not Quantity: On the Interaction between Dataset Design and
  Robustness of CLIP
Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Thao Nguyen
Gabriel Ilharco
Mitchell Wortsman
Sewoong Oh
Ludwig Schmidt
CLIP
VLM
38
97
0
10 Aug 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
26
38
0
18 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
17
15
0
14 Jul 2022
Leakage and the Reproducibility Crisis in ML-based Science
Leakage and the Reproducibility Crisis in ML-based Science
Sayash Kapoor
Arvind Narayanan
17
177
0
14 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
19
29
0
06 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark J. F. Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
14
28
0
30 Jun 2022
Distilling Model Failures as Directions in Latent Space
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
16
89
0
29 Jun 2022
Adversarial Scrutiny of Evidentiary Statistical Software
Adversarial Scrutiny of Evidentiary Statistical Software
Rediet Abebe
Moritz Hardt
Angela Jin
John Miller
Ludwig Schmidt
Rebecca Wexler
28
5
0
19 Jun 2022
How Robust is Unsupervised Representation Learning to Distribution
  Shift?
How Robust is Unsupervised Representation Learning to Distribution Shift?
Yuge Shi
Imant Daunhawer
Julia E. Vogt
Philip H. S. Torr
Amartya Sanyal
OOD
27
25
0
17 Jun 2022
The Importance of Background Information for Out of Distribution
  Generalization
The Importance of Background Information for Out of Distribution Generalization
Jupinder Parmar
Khaled Kamal Saab
Brian Pogatchnik
D. Rubin
Christopher Ré
OOD
11
0
0
17 Jun 2022
GOOD: A Graph Out-of-Distribution Benchmark
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
22
115
0
16 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
M. Petreczky
27
1
0
16 Jun 2022
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
Abdulaziz A. Almuzaini
C. Bhatt
David M. Pennock
V. Singh
FaML
17
10
0
14 Jun 2022
Learning towards Synchronous Network Memorizability and Generalizability
  for Continual Segmentation across Multiple Sites
Learning towards Synchronous Network Memorizability and Generalizability for Continual Segmentation across Multiple Sites
Jingyang Zhang
Peng Xue
Ran Gu
Yuning Gu
Mianxin Liu
Yongsheng Pan
Zhiming Cui
Jiawei Huang
Lei Ma
Dinggang Shen
CLL
17
8
0
14 Jun 2022
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Yilmazcan Ozyurt
Stefan Feuerriegel
Ce Zhang
AI4TS
21
44
0
13 Jun 2022
CodeS: Towards Code Model Generalization Under Distribution Shift
CodeS: Towards Code Model Generalization Under Distribution Shift
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Lei Ma
Mike Papadakis
Yves Le Traon
OOD
18
10
0
11 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
18
8
0
09 Jun 2022
Federated Learning under Distributed Concept Drift
Federated Learning under Distributed Concept Drift
Ellango Jothimurugesan
Kevin Hsieh
Jianyu Wang
Gauri Joshi
Phillip B. Gibbons
FedML
11
46
0
01 Jun 2022
VLUE: A Multi-Task Benchmark for Evaluating Vision-Language Models
VLUE: A Multi-Task Benchmark for Evaluating Vision-Language Models
Wangchunshu Zhou
Yan Zeng
Shizhe Diao
Xinsong Zhang
CoGe
VLM
17
13
0
30 May 2022
Previous
12345
Next