ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08507
  4. Cited By
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
  Decision Processes

Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes

15 December 2020
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
ArXivPDFHTML

Papers citing "Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes"

50 / 61 papers shown
Title
Provably Efficient Multi-Objective Bandit Algorithms under Preference-Centric Customization
Provably Efficient Multi-Objective Bandit Algorithms under Preference-Centric Customization
Linfeng Cao
Ming Shi
Ness B. Shroff
49
0
0
20 Feb 2025
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
78
1
0
10 Feb 2025
Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
Chenlu Ye
Yujia Jin
Alekh Agarwal
Tong Zhang
105
0
0
04 Feb 2025
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Long-Fei Li
Yu-Jie Zhang
Peng Zhao
Zhi-Hua Zhou
105
4
0
17 Jan 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
192
0
0
08 Nov 2024
Second Order Bounds for Contextual Bandits with Function Approximation
Second Order Bounds for Contextual Bandits with Function Approximation
Aldo Pacchiano
61
4
0
24 Sep 2024
Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation
Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation
Taehyun Cho
Seung Han
Kyungjae Lee
Seokhun Ju
Dohyeong Kim
Jungwoo Lee
72
0
0
31 Jul 2024
Imitation Learning in Discounted Linear MDPs without exploration
  assumptions
Imitation Learning in Discounted Linear MDPs without exploration assumptions
Luca Viano
Stratis Skoulakis
V. Cevher
30
3
0
03 May 2024
Distributionally Robust Reinforcement Learning with Interactive Data
  Collection: Fundamental Hardness and Near-Optimal Algorithm
Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm
Miao Lu
Han Zhong
Tong Zhang
Jose H. Blanchet
OffRL
OOD
79
6
0
04 Apr 2024
Horizon-Free Regret for Linear Markov Decision Processes
Horizon-Free Regret for Linear Markov Decision Processes
Zihan Zhang
Jason D. Lee
Yuxin Chen
Simon S. Du
33
3
0
15 Mar 2024
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Zhiyong Wang
Jize Xie
Yi Chen
J. C. Lui
Dongruo Zhou
28
0
0
15 Mar 2024
Provable Risk-Sensitive Distributional Reinforcement Learning with
  General Function Approximation
Provable Risk-Sensitive Distributional Reinforcement Learning with General Function Approximation
Yu Chen
Xiangcheng Zhang
Siwei Wang
Longbo Huang
42
3
0
28 Feb 2024
A Policy Gradient Primal-Dual Algorithm for Constrained MDPs with
  Uniform PAC Guarantees
A Policy Gradient Primal-Dual Algorithm for Constrained MDPs with Uniform PAC Guarantees
Toshinori Kitamura
Tadashi Kozuno
Masahiro Kato
Yuki Ichihara
Soichiro Nishimori
Akiyoshi Sannai
Sho Sonoda
Wataru Kumagai
Yutaka Matsuo
42
2
0
31 Jan 2024
Conservative Exploration for Policy Optimization via Off-Policy Policy
  Evaluation
Conservative Exploration for Policy Optimization via Off-Policy Policy Evaluation
Paul Daoudi
Mathias Formoso
Othman Gaizi
Achraf Azize
Evrard Garcelon
OffRL
26
0
0
24 Dec 2023
Optimal Exploration for Model-Based RL in Nonlinear Systems
Optimal Exploration for Model-Based RL in Nonlinear Systems
Andrew Wagenmaker
Guanya Shi
Kevin G. Jamieson
38
14
0
15 Jun 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
30
20
0
29 May 2023
Regularization and Variance-Weighted Regression Achieves Minimax
  Optimality in Linear MDPs: Theory and Practice
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
30
3
0
22 May 2023
A Theoretical Analysis of Optimistic Proximal Policy Optimization in
  Linear Markov Decision Processes
A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes
Han Zhong
Tong Zhang
35
26
0
15 May 2023
Provably Efficient Reinforcement Learning via Surprise Bound
Provably Efficient Reinforcement Learning via Surprise Bound
Hanlin Zhu
Ruosong Wang
Jason D. Lee
OffRL
28
5
0
22 Feb 2023
Improved Regret Bounds for Linear Adversarial MDPs via Linear
  Optimization
Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization
Fang-yuan Kong
Xiangcheng Zhang
Baoxiang Wang
Shuai Li
26
12
0
14 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to
  Cooperative Multi-Agent Reinforcement Learning
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
5
0
08 Feb 2023
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
Kaiwen Wang
Nathan Kallus
Wen Sun
107
18
0
07 Feb 2023
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
  Worlds in Stochastic and Deterministic Environments
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
Runlong Zhou
Zihan Zhang
S. Du
44
10
0
31 Jan 2023
Improved Regret for Efficient Online Reinforcement Learning with Linear
  Function Approximation
Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation
Uri Sherman
Tomer Koren
Yishay Mansour
32
12
0
30 Jan 2023
SPEED: Experimental Design for Policy Evaluation in Linear
  Heteroscedastic Bandits
SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits
Subhojyoti Mukherjee
Qiaomin Xie
Josiah P. Hanna
R. Nowak
OffRL
53
5
0
29 Jan 2023
Multi-Agent Congestion Cost Minimization With Linear Function
  Approximations
Multi-Agent Congestion Cost Minimization With Linear Function Approximations
Prashant Trivedi
N. Hemachandra
37
0
0
26 Jan 2023
Tight Guarantees for Interactive Decision Making with the
  Decision-Estimation Coefficient
Tight Guarantees for Interactive Decision Making with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Yanjun Han
OffRL
28
29
0
19 Jan 2023
Near-optimal Policy Identification in Active Reinforcement Learning
Near-optimal Policy Identification in Active Reinforcement Learning
Xiang Li
Viraj Mehta
Johannes Kirschner
I. Char
Willie Neiswanger
J. Schneider
Andreas Krause
Ilija Bogunovic
OffRL
43
6
0
19 Dec 2022
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
  Processes
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes
Jiafan He
Heyang Zhao
Dongruo Zhou
Quanquan Gu
OffRL
51
53
0
12 Dec 2022
Model-Free Reinforcement Learning with the Decision-Estimation
  Coefficient
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
38
9
0
25 Nov 2022
On Instance-Dependent Bounds for Offline Reinforcement Learning with
  Linear Function Approximation
On Instance-Dependent Bounds for Offline Reinforcement Learning with Linear Function Approximation
Thanh Nguyen-Tang
Ming Yin
Sunil R. Gupta
Svetha Venkatesh
R. Arora
OffRL
58
16
0
23 Nov 2022
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning
  in Online Reinforcement Learning
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning
Shuang Qiu
Lingxiao Wang
Chenjia Bai
Zhuoran Yang
Zhaoran Wang
SSL
OffRL
26
32
0
29 Jul 2022
Provably Efficient Reinforcement Learning for Online Adaptive Influence
  Maximization
Provably Efficient Reinforcement Learning for Online Adaptive Influence Maximization
Kaixuan Huang
Yuehua Wu
Xuezhou Zhang
Shenyinying Tu
Qingyun Wu
Mengdi Wang
Huazheng Wang
28
1
0
29 Jun 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions
  and Sample Complexity
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
47
22
0
15 Jun 2022
Offline Reinforcement Learning with Differential Privacy
Offline Reinforcement Learning with Differential Privacy
Dan Qiao
Yu Wang
OffRL
41
23
0
02 Jun 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial
  Corruptions
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
66
46
0
13 May 2022
Provably Efficient Kernelized Q-Learning
Provably Efficient Kernelized Q-Learning
Shuang Liu
H. Su
MLT
27
4
0
21 Apr 2022
Near-optimal Offline Reinforcement Learning with Linear Representation:
  Leveraging Variance Information with Pessimism
Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism
Ming Yin
Yaqi Duan
Mengdi Wang
Yu Wang
OffRL
34
66
0
11 Mar 2022
Learn to Match with No Regret: Reinforcement Learning in Markov Matching
  Markets
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets
Yifei Min
Tianhao Wang
Ruitu Xu
Zhaoran Wang
Michael I. Jordan
Zhuoran Yang
33
21
0
07 Mar 2022
Policy Optimization for Stochastic Shortest Path
Policy Optimization for Stochastic Shortest Path
Liyu Chen
Haipeng Luo
Aviv A. Rosenberg
19
12
0
07 Feb 2022
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in
  General-Sum Markov Games with Myopic Followers?
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopic Followers?
Han Zhong
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
31
30
0
27 Dec 2021
Differentially Private Exploration in Reinforcement Learning with Linear
  Representation
Differentially Private Exploration in Reinforcement Learning with Linear Representation
Paul Luyo
Evrard Garcelon
A. Lazaric
Matteo Pirotta
57
11
0
02 Dec 2021
Reinforcement Learning in Linear MDPs: Constant Regret and
  Representation Selection
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini
Andrea Tirinzoni
Aldo Pacchiano
Marcello Restelli
A. Lazaric
Matteo Pirotta
19
18
0
27 Oct 2021
Learning Stochastic Shortest Path with Linear Function Approximation
Learning Stochastic Shortest Path with Linear Function Approximation
Steffen Czolbe
Jiafan He
Adrian Dalca
Quanquan Gu
39
30
0
25 Oct 2021
Linear Contextual Bandits with Adversarial Corruptions
Linear Contextual Bandits with Adversarial Corruptions
Heyang Zhao
Dongruo Zhou
Quanquan Gu
AAML
36
24
0
25 Oct 2021
Locally Differentially Private Reinforcement Learning for Linear Mixture
  Markov Decision Processes
Locally Differentially Private Reinforcement Learning for Linear Mixture Markov Decision Processes
Chonghua Liao
Jiafan He
Quanquan Gu
27
17
0
19 Oct 2021
Understanding Domain Randomization for Sim-to-real Transfer
Understanding Domain Randomization for Sim-to-real Transfer
Xiaoyu Chen
Jiachen Hu
Chi Jin
Lihong Li
Liwei Wang
24
112
0
07 Oct 2021
Efficient First-Order Contextual Bandits: Prediction, Allocation, and
  Triangular Discrimination
Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination
Dylan J. Foster
A. Krishnamurthy
48
43
0
05 Jul 2021
Variance-Aware Off-Policy Evaluation with Linear Function Approximation
Variance-Aware Off-Policy Evaluation with Linear Function Approximation
Yifei Min
Tianhao Wang
Dongruo Zhou
Quanquan Gu
OffRL
37
38
0
22 Jun 2021
Provably Efficient Representation Selection in Low-rank Markov Decision
  Processes: From Online to Offline RL
Provably Efficient Representation Selection in Low-rank Markov Decision Processes: From Online to Offline RL
Weitong Zhang
Jiafan He
Dongruo Zhou
Amy Zhang
Quanquan Gu
OffRL
22
11
0
22 Jun 2021
12
Next