ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00982
  4. Cited By
Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty
  Quantification

Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty Quantification

29 December 2020
Michael Weiss
Paolo Tonella
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty Quantification"

9 / 9 papers shown
Title
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
Ruben Grewal
Paolo Tonella
Andrea Stocco
48
12
0
29 Apr 2024
Uncertainty Quantification for Deep Neural Networks: An Empirical
  Comparison and Usage Guidelines
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines
Michael Weiss
Paolo Tonella
BDL
UQCV
30
11
0
14 Dec 2022
CheapET-3: Cost-Efficient Use of Remote DNN Models
CheapET-3: Cost-Efficient Use of Remote DNN Models
Michael Weiss
36
1
0
24 Aug 2022
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN
  Supervision Testing
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
18
6
0
21 Jul 2022
Simple Techniques Work Surprisingly Well for Neural Network Test
  Prioritization and Active Learning (Replicability Study)
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Michael Weiss
Paolo Tonella
AAML
18
50
0
02 May 2022
Prediction Surface Uncertainty Quantification in Object Detection Models
  for Autonomous Driving
Prediction Surface Uncertainty Quantification in Object Detection Models for Autonomous Driving
Ferhat Ozgur Catak
T. Yue
Shaukat Ali
25
21
0
11 Jul 2021
Fail-Safe Execution of Deep Learning based Systems through Uncertainty
  Monitoring
Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring
Michael Weiss
Paolo Tonella
AAML
48
29
0
01 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1