ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.01710
  4. Cited By
Learning Accurate Dense Correspondences and When to Trust Them

Learning Accurate Dense Correspondences and When to Trust Them

5 January 2021
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
    3DH
    3DPC
ArXivPDFHTML

Papers citing "Learning Accurate Dense Correspondences and When to Trust Them"

11 / 11 papers shown
Title
IM360: Textured Mesh Reconstruction for Large-scale Indoor Mapping with 360$^\circ$ Cameras
IM360: Textured Mesh Reconstruction for Large-scale Indoor Mapping with 360∘^\circ∘ Cameras
Dongki Jung
Jaehoon Choi
Yonghan Lee
Dinesh Manocha
35
0
0
20 Feb 2025
MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training
MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training
Xingyi He He
Hao Yu
Sida Peng
Dongli Tan
Zehong Shen
Hujun Bao
Xiaowei Zhou
33
3
0
13 Jan 2025
OmniGlue: Generalizable Feature Matching with Foundation Model Guidance
OmniGlue: Generalizable Feature Matching with Foundation Model Guidance
Hanwen Jiang
Arjun Karpur
Bingyi Cao
Qixing Huang
André Araujo
VLM
21
27
0
21 May 2024
Telling Left from Right: Identifying Geometry-Aware Semantic
  Correspondence
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
Junyi Zhang
Charles Herrmann
Junhwa Hur
Eric Chen
Varun Jampani
Deqing Sun
Ming-Hsuan Yang
6
37
0
28 Nov 2023
BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields
BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields
Shreya Saha
Sainan Liu
Shan Lin
Jingpei Lu
Michael C. Yip
Sainan Liu
MedIm
24
4
0
27 Sep 2023
Neural radiance fields in the industrial and robotics domain:
  applications, research opportunities and use cases
Neural radiance fields in the industrial and robotics domain: applications, research opportunities and use cases
Eugen Šlapak
Enric Pardo
Matús Dopiriak
T. Maksymyuk
Juraj Gazda
AI4CE
4
11
0
14 Aug 2023
Supervised Homography Learning with Realistic Dataset Generation
Supervised Homography Learning with Realistic Dataset Generation
Hai Jiang
Haipeng Li
Songchen Han
Haoqiang Fan
Bing Zeng
Shuaicheng Liu
GAN
12
8
0
28 Jul 2023
Dyn-E: Local Appearance Editing of Dynamic Neural Radiance Fields
Dyn-E: Local Appearance Editing of Dynamic Neural Radiance Fields
Shangzhan Zhang
Sida Peng
Yinji ShenTu
Qing Shuai
Tianrun Chen
Kaicheng Yu
Hujun Bao
Xiaowei Zhou
38
7
0
24 Jul 2023
NeuralMarker: A Framework for Learning General Marker Correspondence
NeuralMarker: A Framework for Learning General Marker Correspondence
Zhaoyang Huang
Xiao Pan
Weihong Pan
Weikang Bian
Yan Xu
Ka Chun Cheung
Guofeng Zhang
Hongsheng Li
17
5
0
19 Sep 2022
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
243
1,817
0
18 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1