Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04535
Cited By
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
11 January 2021
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning"
50 / 151 papers shown
Title
DPolicy: Managing Privacy Risks Across Multiple Releases with Differential Privacy
Nicolas Küchler
Alexander Viand
Hidde Lycklama
Anwar Hithnawi
26
0
0
10 May 2025
DeSIA: Attribute Inference Attacks Against Limited Fixed Aggregate Statistics
Yifeng Mao
Bozhidar Stevanoski
Yves-Alexandre de Montjoye
45
0
0
25 Apr 2025
MCMC for Bayesian estimation of Differential Privacy from Membership Inference Attacks
Ceren Yildirim
Kamer Kaya
Sinan Yildirim
Erkay Savas
31
0
0
23 Apr 2025
DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Chen Gong
Kecen Li
Zinan Lin
Tianhao Wang
49
3
0
18 Mar 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
(
ε
,
δ
)
(\varepsilon, δ)
(
ε
,
δ
)
Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Borja Balle
Antti Honkela
51
0
0
13 Mar 2025
From Centralized to Decentralized Federated Learning: Theoretical Insights, Privacy Preservation, and Robustness Challenges
Qiongxiu Li
Wenrui Yu
Yufei Xia
Jun Pang
FedML
50
1
0
10 Mar 2025
Efficient Membership Inference Attacks by Bayesian Neural Network
Zhenlong Liu
Wenyu Jiang
Feng Zhou
Hongxin Wei
MIALM
66
1
0
10 Mar 2025
Privacy Auditing of Large Language Models
Ashwinee Panda
Xinyu Tang
Milad Nasr
Christopher A. Choquette-Choo
Prateek Mittal
PILM
62
5
0
09 Mar 2025
Synthetic Data Privacy Metrics
Amy Steier
Lipika Ramaswamy
Andre Manoel
Alexa Haushalter
41
0
0
08 Jan 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
85
0
0
02 Dec 2024
Curator Attack: When Blackbox Differential Privacy Auditing Loses Its Power
Shiming Wang
Liyao Xiang
Bowei Cheng
Zhe Ji
Tianran Sun
Xinbing Wang
64
0
0
25 Nov 2024
Empirical Privacy Evaluations of Generative and Predictive Machine Learning Models -- A review and challenges for practice
Flavio Hafner
Chang Sun
SyDa
59
0
0
19 Nov 2024
On Active Privacy Auditing in Supervised Fine-tuning for White-Box Language Models
Qian Sun
Hanpeng Wu
Xi Sheryl Zhang
36
0
0
11 Nov 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
28
7
0
08 Oct 2024
Adaptively Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
22
0
0
02 Oct 2024
Membership Inference Attacks Cannot Prove that a Model Was Trained On Your Data
Jie Zhang
Debeshee Das
Gautam Kamath
Florian Tramèr
MIALM
MIACV
223
16
1
29 Sep 2024
Understanding Data Importance in Machine Learning Attacks: Does Valuable Data Pose Greater Harm?
Rui Wen
Michael Backes
Yang Zhang
TDI
AAML
36
0
0
05 Sep 2024
Investigating Privacy Leakage in Dimensionality Reduction Methods via Reconstruction Attack
Chayadon Lumbut
Donlapark Ponnoprat
25
0
0
30 Aug 2024
Analyzing Inference Privacy Risks Through Gradients in Machine Learning
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
K. Parsons
Bradley Malin
Ye Wang
FedML
30
1
0
29 Aug 2024
Enabling Humanitarian Applications with Targeted Differential Privacy
Nitin Kohli
J. Blumenstock
30
0
0
24 Aug 2024
Building an Ethical and Trustworthy Biomedical AI Ecosystem for the Translational and Clinical Integration of Foundational Models
Simha Sankar Baradwaj
Destiny Gilliland
Jack Rincon
Henning Hermjakob
Yu Yan
...
Dean Wang
Karol Watson
Alex Bui
Wei Wang
Peipei Ping
40
5
0
18 Jul 2024
Attack-Aware Noise Calibration for Differential Privacy
B. Kulynych
Juan Felipe Gomez
G. Kaissis
Flavio du Pin Calmon
Carmela Troncoso
49
6
0
02 Jul 2024
A Zero Auxiliary Knowledge Membership Inference Attack on Aggregate Location Data
Vincent Guan
Florent Guépin
Ana-Maria Cretu
Yves-Alexandre de Montjoye
26
1
0
26 Jun 2024
Better Membership Inference Privacy Measurement through Discrepancy
Ruihan Wu
Pengrun Huang
Kamalika Chaudhuri
MIACV
27
0
0
24 May 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
28
9
0
23 May 2024
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
25
11
0
23 May 2024
Data Contamination Calibration for Black-box LLMs
Wen-song Ye
Jiaqi Hu
Liyao Li
Haobo Wang
Gang Chen
Junbo Zhao
34
6
0
20 May 2024
"What do you want from theory alone?" Experimenting with Tight Auditing of Differentially Private Synthetic Data Generation
Meenatchi Sundaram Muthu Selva Annamalai
Georgi Ganev
Emiliano De Cristofaro
35
9
0
16 May 2024
ATTAXONOMY: Unpacking Differential Privacy Guarantees Against Practical Adversaries
Rachel Cummings
Shlomi Hod
Jayshree Sarathy
Marika Swanberg
39
2
0
02 May 2024
LazyDP: Co-Designing Algorithm-Software for Scalable Training of Differentially Private Recommendation Models
Juntaek Lim
Youngeun Kwon
Ranggi Hwang
Kiwan Maeng
Edward Suh
Minsoo Rhu
SyDa
31
0
0
12 Apr 2024
Privacy Backdoors: Stealing Data with Corrupted Pretrained Models
Shanglun Feng
Florian Tramèr
SILM
32
14
0
30 Mar 2024
Differentially Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
28
6
0
22 Mar 2024
Visual Privacy Auditing with Diffusion Models
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Daniel Rueckert
Alexander Ziller
DiffM
AAML
33
0
0
12 Mar 2024
Unveiling Privacy, Memorization, and Input Curvature Links
Deepak Ravikumar
Efstathia Soufleri
Abolfazl Hashemi
Kaushik Roy
49
5
0
28 Feb 2024
Synthesizing Tight Privacy and Accuracy Bounds via Weighted Model Counting
Lisa Oakley
Steven Holtzen
Alina Oprea
30
0
0
26 Feb 2024
Revisiting Differentially Private Hyper-parameter Tuning
Zihang Xiang
Tianhao Wang
Cheng-Long Wang
Di Wang
32
6
0
20 Feb 2024
Bounding Reconstruction Attack Success of Adversaries Without Data Priors
Alexander Ziller
Anneliese Riess
Kristian Schwethelm
Tamara T. Mueller
Daniel Rueckert
Georgios Kaissis
MIACV
AAML
29
1
0
20 Feb 2024
Measuring Privacy Loss in Distributed Spatio-Temporal Data
Tatsuki Koga
Casey Meehan
Kamalika Chaudhuri
27
0
0
18 Feb 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
30
4
0
14 Feb 2024
PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining
Mishaal Kazmi
H. Lautraite
Alireza Akbari
Mauricio Soroco
Qiaoyue Tang
Tao Wang
Sébastien Gambs
Mathias Lécuyer
29
8
0
12 Feb 2024
Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss
Zhenlong Liu
Lei Feng
Huiping Zhuang
Xiaofeng Cao
Hongxin Wei
19
2
0
08 Feb 2024
On provable privacy vulnerabilities of graph representations
Ruofan Wu
Guanhua Fang
Qiying Pan
Mingyang Zhang
Tengfei Liu
Weiqiang Wang
AAML
22
0
0
06 Feb 2024
Generating Synthetic Health Sensor Data for Privacy-Preserving Wearable Stress Detection
Lucas Lange
Nils Wenzlitschke
Erhard Rahm
14
7
0
24 Jan 2024
TOFU: A Task of Fictitious Unlearning for LLMs
Pratyush Maini
Zhili Feng
Avi Schwarzschild
Zachary Chase Lipton
J. Zico Kolter
MU
CLL
38
141
0
11 Jan 2024
Membership Inference Attacks on Diffusion Models via Quantile Regression
Shuai Tang
Zhiwei Steven Wu
Sergul Aydore
Michael Kearns
Aaron Roth
21
14
0
08 Dec 2023
Low-Cost High-Power Membership Inference Attacks
Sajjad Zarifzadeh
Philippe Liu
Reza Shokri
47
34
0
06 Dec 2023
Can we infer the presence of Differential Privacy in Deep Learning models' weights? Towards more secure Deep Learning
Daniel Jiménez-López
Daniel
Nuria Rodríguez Barroso
Nuria
M. V. Luzón
M. Victoria
Francisco Herrera
Francisco
AAML
11
0
0
20 Nov 2023
Preserving Node-level Privacy in Graph Neural Networks
Zihang Xiang
Tianhao Wang
Di Wang
23
6
0
12 Nov 2023
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
9
1
0
06 Nov 2023
1
2
3
4
Next