Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.10588
Cited By
Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration
26 January 2021
Song Mei
Theodor Misiakiewicz
Andrea Montanari
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration"
50 / 92 papers shown
Title
Querying Kernel Methods Suffices for Reconstructing their Training Data
Daniel Barzilai
Yuval Margalit
Eitan Gronich
Gilad Yehudai
Meirav Galun
Ronen Basri
30
0
0
25 May 2025
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
107
0
0
29 Apr 2025
Weak-to-Strong Generalization Even in Random Feature Networks, Provably
Marko Medvedev
Kaifeng Lyu
Dingli Yu
Sanjeev Arora
Zhiyuan Li
Nathan Srebro
149
3
0
04 Mar 2025
On the Saturation Effects of Spectral Algorithms in Large Dimensions
Weihao Lu
Haobo Zhang
Yicheng Li
Q. Lin
99
2
0
01 Mar 2025
Cauchy Random Features for Operator Learning in Sobolev Space
Chunyang Liao
Deanna Needell
Hayden Schaeffer
120
1
0
01 Mar 2025
Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization
Simone Bombari
Marco Mondelli
297
0
0
03 Feb 2025
Random Feature Models with Learnable Activation Functions
Zailin Ma
Jiansheng Yang
Yaodong Yang
122
1
0
29 Nov 2024
A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities
Yatin Dandi
Luca Pesce
Hugo Cui
Florent Krzakala
Yue M. Lu
Bruno Loureiro
MLT
116
2
0
24 Oct 2024
Generalization for Least Squares Regression With Simple Spiked Covariances
Jiping Li
Rishi Sonthalia
54
1
0
17 Oct 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
94
3
0
05 Sep 2024
On the Pinsker bound of inner product kernel regression in large dimensions
Weihao Lu
Jialin Ding
Haobo Zhang
Qian Lin
87
1
0
02 Sep 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
99
14
0
12 Aug 2024
Early learning of the optimal constant solution in neural networks and humans
Jirko Rubruck
Jan P. Bauer
Andrew M. Saxe
Christopher Summerfield
126
2
0
25 Jun 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
66
4
0
14 Jun 2024
High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization
Yihang Chen
Fanghui Liu
Taiji Suzuki
Volkan Cevher
81
1
0
05 Jun 2024
The phase diagram of kernel interpolation in large dimensions
Haobo Zhang
Weihao Lu
Qian Lin
69
6
0
19 Apr 2024
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Umberto M. Tomasini
Matthieu Wyart
BDL
103
7
0
16 Apr 2024
ANOVA-boosting for Random Fourier Features
Daniel Potts
Laura Weidensager
79
2
0
03 Apr 2024
Asymptotics of Learning with Deep Structured (Random) Features
Dominik Schröder
Daniil Dmitriev
Hugo Cui
Bruno Loureiro
80
7
0
21 Feb 2024
Asymptotics of feature learning in two-layer networks after one gradient-step
Hugo Cui
Luca Pesce
Yatin Dandi
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
Bruno Loureiro
MLT
135
19
0
07 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
89
8
0
02 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
74
2
0
01 Feb 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
114
17
0
26 Dec 2023
Learning from higher-order statistics, efficiently: hypothesis tests, random features, and neural networks
Eszter Székely
Lorenzo Bardone
Federica Gerace
Sebastian Goldt
73
2
0
22 Dec 2023
More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory
James B. Simon
Dhruva Karkada
Nikhil Ghosh
Mikhail Belkin
AI4CE
BDL
114
14
0
24 Nov 2023
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
106
0
0
23 Nov 2023
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
Tin Sum Cheng
Aurelien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
61
5
0
02 Oct 2023
Fixing the NTK: From Neural Network Linearizations to Exact Convex Programs
Rajat Vadiraj Dwaraknath
Tolga Ergen
Mert Pilanci
140
0
0
26 Sep 2023
Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
Xuwei Yang
Anastasis Kratsios
Florian Krach
Matheus Grasselli
Aurelien Lucchi
FedML
59
2
0
08 Sep 2023
Optimal Rate of Kernel Regression in Large Dimensions
Weihao Lu
Hao Zhang
Yicheng Li
Manyun Xu
Qian Lin
86
6
0
08 Sep 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
134
13
0
25 Aug 2023
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
Lukas Gonon
A. Jacquier
78
15
0
24 Jul 2023
What can a Single Attention Layer Learn? A Study Through the Random Features Lens
Hengyu Fu
Tianyu Guo
Yu Bai
Song Mei
MLT
98
26
0
21 Jul 2023
An Agnostic View on the Cost of Overfitting in (Kernel) Ridge Regression
Lijia Zhou
James B. Simon
Gal Vardi
Nathan Srebro
57
2
0
22 Jun 2023
Nonparametric regression using over-parameterized shallow ReLU neural networks
Yunfei Yang
Ding-Xuan Zhou
151
6
0
14 Jun 2023
Escaping mediocrity: how two-layer networks learn hard generalized linear models with SGD
Luca Arnaboldi
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
MLT
99
5
0
29 May 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
122
29
0
29 May 2023
Learning Capacity: A Measure of the Effective Dimensionality of a Model
Daiwei Chen
Wei-Di Chang
Pratik Chaudhari
70
4
0
27 May 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
86
16
0
26 May 2023
How many samples are needed to leverage smoothness?
Vivien A. Cabannes
Stefano Vigogna
62
2
0
25 May 2023
Least Squares Regression Can Exhibit Under-Parameterized Double Descent
Xinyue Li
Rishi Sonthalia
109
3
0
24 May 2023
Lp- and Risk Consistency of Localized SVMs
Hannes Köhler
112
0
0
16 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
198
15
0
11 May 2023
New Equivalences Between Interpolation and SVMs: Kernels and Structured Features
Chiraag Kaushik
Andrew D. McRae
Mark A. Davenport
Vidya Muthukumar
90
2
0
03 May 2023
Spectral clustering in the Gaussian mixture block model
Shuangping Li
T. Schramm
90
8
0
29 Apr 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
86
0
0
24 Mar 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
196
38
0
28 Feb 2023
Are Gaussian data all you need? Extents and limits of universality in high-dimensional generalized linear estimation
Luca Pesce
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
84
28
0
17 Feb 2023
Deterministic equivalent and error universality of deep random features learning
Dominik Schröder
Hugo Cui
Daniil Dmitriev
Bruno Loureiro
MLT
99
29
0
01 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
103
39
0
01 Feb 2023
1
2
Next