Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.10588
Cited By
Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration
26 January 2021
Song Mei
Theodor Misiakiewicz
Andrea Montanari
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration"
42 / 92 papers shown
Title
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
87
9
0
18 Jan 2023
Bayesian Interpolation with Deep Linear Networks
Boris Hanin
Alexander Zlokapa
137
26
0
29 Dec 2022
Random Feature Models for Learning Interacting Dynamical Systems
Yuxuan Liu
S. McCalla
Hayden Schaeffer
101
12
0
11 Dec 2022
A note on the prediction error of principal component regression in high dimensions
L. Hucker
Martin Wahl
64
6
0
09 Dec 2022
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
E. Agliari
L. Albanese
Francesco Alemanno
Andrea Alessandrelli
Adriano Barra
F. Giannotti
Daniele Lotito
D. Pedreschi
48
18
0
25 Nov 2022
Overparameterized random feature regression with nearly orthogonal data
Zhichao Wang
Yizhe Zhu
75
4
0
11 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
225
71
0
27 Oct 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
126
11
0
14 Sep 2022
A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors
Nikhil Ghosh
M. Belkin
74
7
0
23 Jul 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
77
10
0
08 Jun 2022
Precise Learning Curves and Higher-Order Scaling Limits for Dot Product Kernel Regression
Lechao Xiao
Hong Hu
Theodor Misiakiewicz
Yue M. Lu
Jeffrey Pennington
125
20
0
30 May 2022
Excess Risk of Two-Layer ReLU Neural Networks in Teacher-Student Settings and its Superiority to Kernel Methods
Shunta Akiyama
Taiji Suzuki
57
6
0
30 May 2022
On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions
Daniel Beaglehole
M. Belkin
Parthe Pandit
62
11
0
26 May 2022
Bandwidth Selection for Gaussian Kernel Ridge Regression via Jacobian Control
Oskar Allerbo
Rebecka Jörnsten
59
2
0
24 May 2022
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari
Mohammad Hossein Amani
Marco Mondelli
85
26
0
20 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
92
16
0
13 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
96
129
0
03 May 2022
Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression
Theodor Misiakiewicz
54
40
0
21 Apr 2022
SRMD: Sparse Random Mode Decomposition
Nicholas Richardson
Hayden Schaeffer
Giang Tran
46
11
0
12 Apr 2022
Adversarial Examples in Random Neural Networks with General Activations
Andrea Montanari
Yuchen Wu
GAN
AAML
103
14
0
31 Mar 2022
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
46
4
0
10 Mar 2022
Failure and success of the spectral bias prediction for Kernel Ridge Regression: the case of low-dimensional data
Umberto M. Tomasini
Antonio Sclocchi
Matthieu Wyart
70
12
0
07 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
119
15
0
06 Feb 2022
Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks
Lechao Xiao
110
22
0
10 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
90
29
0
16 Nov 2021
The Three Stages of Learning Dynamics in High-Dimensional Kernel Methods
Nikhil Ghosh
Song Mei
Bin Yu
73
20
0
13 Nov 2021
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
184
11
0
09 Nov 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
109
12
0
21 Oct 2021
On the Double Descent of Random Features Models Trained with SGD
Fanghui Liu
Johan A. K. Suykens
Volkan Cevher
MLT
101
10
0
13 Oct 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
104
20
0
20 Sep 2021
Reconstruction on Trees and Low-Degree Polynomials
Frederic Koehler
Elchanan Mossel
70
10
0
14 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
117
72
0
06 Sep 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
83
9
0
29 Jul 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
77
37
0
14 Jun 2021
How rotational invariance of common kernels prevents generalization in high dimensions
Konstantin Donhauser
Mingqi Wu
Fanny Yang
80
24
0
09 Apr 2021
Minimum complexity interpolation in random features models
Michael Celentano
Theodor Misiakiewicz
Andrea Montanari
31
4
0
30 Mar 2021
Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models
Zitong Yang
Yu Bai
Song Mei
71
18
0
08 Mar 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
107
91
0
25 Feb 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
85
74
0
23 Feb 2021
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
86
169
0
29 Sep 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
187
97
0
25 Jul 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
124
176
0
23 Apr 2020
Previous
1
2