Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.00931
Cited By
v1
v2
v3 (latest)
Information-Theoretic Generalization Bounds for Stochastic Gradient Descent
1 February 2021
Gergely Neu
Gintare Karolina Dziugaite
Mahdi Haghifam
Daniel M. Roy
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Information-Theoretic Generalization Bounds for Stochastic Gradient Descent"
50 / 71 papers shown
Title
Generalization Bound of Gradient Flow through Training Trajectory and Data-dependent Kernel
Yilan Chen
Zhichao Wang
Wei Huang
Andi Han
Taiji Suzuki
Arya Mazumdar
MLT
20
0
0
12 Jun 2025
Fairness Overfitting in Machine Learning: An Information-Theoretic Perspective
Firas Laakom
Haobo Chen
Jürgen Schmidhuber
Yuheng Bu
14
0
0
09 Jun 2025
Algorithm- and Data-Dependent Generalization Bounds for Score-Based Generative Models
Benjamin Dupuis
Dario Shariatian
Maxime Haddouche
Alain Durmus
Umut Simsekli
56
0
0
04 Jun 2025
Information-theoretic Generalization Analysis for VQ-VAEs: A Role of Latent Variables
Futoshi Futami
Masahiro Fujisawa
DRL
CML
79
0
0
26 May 2025
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Romain Chor
Abdellatif Zaidi
Piotr Krasnowski
95
1
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Romain Chor
Milad Sefidgaran
Piotr Krasnowski
282
2
0
21 Feb 2025
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
Roni Khardon
BDL
81
0
0
17 Feb 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
101
0
0
11 Feb 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
166
1
0
25 Nov 2024
Generalization Bounds via Conditional
f
f
f
-Information
Ziqiao Wang
Yongyi Mao
FedML
139
1
0
30 Oct 2024
Bootstrap SGD: Algorithmic Stability and Robustness
Andreas Christmann
Yunwen Lei
55
0
0
02 Sep 2024
Deep Companion Learning: Enhancing Generalization Through Historical Consistency
Ruizhao Zhu
Venkatesh Saligrama
FedML
87
0
0
26 Jul 2024
How Does Distribution Matching Help Domain Generalization: An Information-theoretic Analysis
Yuxin Dong
Tieliang Gong
Hong Chen
Shuangyong Song
Weizhan Zhang
Chen Li
OOD
85
1
0
14 Jun 2024
Enhancing Domain Adaptation through Prompt Gradient Alignment
Hoang Phan
Lam C. Tran
Quyen Tran
Trung Le
173
1
0
13 Jun 2024
Error Bounds of Supervised Classification from Information-Theoretic Perspective
Binchuan Qi
Wei Gong
Li Li
58
0
0
07 Jun 2024
Finite Sample Analysis and Bounds of Generalization Error of Gradient Descent in In-Context Linear Regression
Karthik Duraisamy
MLT
85
3
0
03 May 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
129
5
0
26 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
108
6
0
04 Apr 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
116
4
0
13 Feb 2024
Enhancing selectivity using Wasserstein distance based reweighing
Pratik Worah
OOD
114
0
0
21 Jan 2024
Convex SGD: Generalization Without Early Stopping
Julien Hendrickx
A. Olshevsky
MLT
LRM
62
1
0
08 Jan 2024
Class-wise Generalization Error: an Information-Theoretic Analysis
Firas Laakom
Yuheng Bu
Moncef Gabbouj
76
1
0
05 Jan 2024
A Novel Paradigm for Neural Computation: X-Net with Learnable Neurons and Adaptable Structure
Yanjie Li
Weijun Li
Lina Yu
Min Wu
Jinyi Liu
...
Xin Ning
Yugui Zhang
Baoli Lu
Jian Xu
Shuang Li
74
0
0
03 Jan 2024
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
152
0
0
08 Nov 2023
Sample-Conditioned Hypothesis Stability Sharpens Information-Theoretic Generalization Bounds
Ziqiao Wang
Yongyi Mao
87
7
0
31 Oct 2023
Information-Theoretic Generalization Analysis for Topology-aware Heterogeneous Federated Edge Learning over Noisy Channels
Zheshun Wu
Zenglin Xu
Hongfang Yu
Jie Liu
65
5
0
25 Oct 2023
Sample-Driven Federated Learning for Energy-Efficient and Real-Time IoT Sensing
Minh Ngoc Luu
Minh-Duong Nguyen
E. Bedeer
Van Duc Nguyen
D. Hoang
Diep N. Nguyen
Quoc-Viet Pham
62
3
0
11 Oct 2023
Generalization error bounds for iterative learning algorithms with bounded updates
Jingwen Fu
Nanning Zheng
79
1
0
10 Sep 2023
Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles
Kevin Scaman
Mathieu Even
B. L. Bars
Laurent Massoulié
44
1
0
10 Jul 2023
Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm
B. L. Bars
A. Bellet
Marc Tommasi
Kevin Scaman
Giovanni Neglia
58
2
0
05 Jun 2023
Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training
Rie Johnson
Tong Zhang
43
6
0
31 May 2023
Online-to-PAC Conversions: Generalization Bounds via Regret Analysis
Gábor Lugosi
Gergely Neu
85
12
0
31 May 2023
On the Role of Noise in the Sample Complexity of Learning Recurrent Neural Networks: Exponential Gaps for Long Sequences
A. F. Pour
H. Ashtiani
73
0
0
28 May 2023
Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
Yuxin Dong
Tieliang Gong
Hao Chen
Chen Li
60
3
0
02 May 2023
Learning Trajectories are Generalization Indicators
Jingwen Fu
Zhizheng Zhang
Dacheng Yin
Yan Lu
Nanning Zheng
AI4CE
86
3
0
25 Apr 2023
More Communication Does Not Result in Smaller Generalization Error in Federated Learning
Abdellatif Zaidi
Romain Chor
Milad Sefidgaran
FedML
AI4CE
99
10
0
24 Apr 2023
Generalization Error Bounds for Noisy, Iterative Algorithms via Maximal Leakage
Ibrahim Issa
A. Esposito
Michael C. Gastpar
56
2
0
28 Feb 2023
Information Theoretic Lower Bounds for Information Theoretic Upper Bounds
Roi Livni
112
16
0
09 Feb 2023
Tighter Information-Theoretic Generalization Bounds from Supersamples
Ziqiao Wang
Yongyi Mao
109
19
0
05 Feb 2023
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Anant Raj
Lingjiong Zhu
Mert Gurbuzbalaban
Umut Simsekli
78
16
0
27 Jan 2023
Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
Mahdi Haghifam
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
Daniel M. Roy
Gintare Karolina Dziugaite
89
19
0
27 Dec 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
111
12
0
19 Nov 2022
A New Family of Generalization Bounds Using Samplewise Evaluated CMI
Fredrik Hellström
G. Durisi
92
26
0
12 Oct 2022
Information-Theoretic Analysis of Unsupervised Domain Adaptation
Ziqiao Wang
Yongyi Mao
119
11
0
03 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
379
50
0
29 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
152
4
0
06 Sep 2022
Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality
Wave Ngampruetikorn
David J. Schwab
59
7
0
08 Aug 2022
On Leave-One-Out Conditional Mutual Information For Generalization
Mohamad Rida Rammal
Alessandro Achille
Aditya Golatkar
Suhas Diggavi
Stefano Soatto
VLM
95
6
0
01 Jul 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
66
3
0
14 Jun 2022
Stability and Generalization of Stochastic Optimization with Nonconvex and Nonsmooth Problems
Yunwen Lei
37
19
0
14 Jun 2022
1
2
Next