Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03054
Cited By
Removing biased data to improve fairness and accuracy
5 February 2021
Sahil Verma
Michael Ernst
René Just
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Removing biased data to improve fairness and accuracy"
8 / 8 papers shown
Title
FAIR-FATE: Fair Federated Learning with Momentum
Teresa Salazar
Miguel X. Fernandes
Helder Araújo
Pedro Abreu
FedML
30
18
0
27 Sep 2022
Enforcing Delayed-Impact Fairness Guarantees
Aline Weber
Blossom Metevier
Yuriy Brun
Philip S. Thomas
Bruno Castro da Silva
FaML
22
9
0
24 Aug 2022
Accurate Fairness: Improving Individual Fairness without Trading Accuracy
Xuran Li
Peng Wu
Jing Su
FaML
31
17
0
18 May 2022
Repairing Brain-Computer Interfaces with Fault-Based Data Acquisition
Cailin Winston
Caleb Winston
Chloe N. Winston
Claris Winston
Cleah Winston
Rajesh P. N. Rao
René Just
11
1
0
20 Mar 2022
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
Yoad Tewel
Yoav Shalev
Idan Schwartz
Lior Wolf
VLM
34
192
0
29 Nov 2021
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
320
4,203
0
23 Aug 2019
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
172
104
0
25 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
1