ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03189
  4. Cited By
Invertible Neural Networks versus MCMC for Posterior Reconstruction in
  Grazing Incidence X-Ray Fluorescence

Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence

5 February 2021
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
ArXivPDFHTML

Papers citing "Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence"

12 / 12 papers shown
Title
Accelerated Stein Variational Gradient Flow
Accelerated Stein Variational Gradient Flow
Viktor Stein
Wuchen Li
44
0
0
30 Mar 2025
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Viktor Stein
Sebastian Neumayer
Gabriele Steidl
Nicolaj Rux
48
9
0
07 Feb 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
14
0
0
05 Feb 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
19
5
0
27 Dec 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
16
9
0
28 Mar 2023
Posterior Estimation Using Deep Learning: A Simulation Study of
  Compartmental Modeling in Dynamic PET
Posterior Estimation Using Deep Learning: A Simulation Study of Compartmental Modeling in Dynamic PET
Xiaofeng Liu
Thibault Marin
Tiss Amal
Jonghye Woo
G. El Fakhri
J. Ouyang
MedIm
6
2
0
17 Mar 2023
Reliable amortized variational inference with physics-based latent
  distribution correction
Reliable amortized variational inference with physics-based latent distribution correction
Ali Siahkoohi
G. Rizzuti
Rafael Orozco
Felix J. Herrmann
28
24
0
24 Jul 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
17
15
0
20 Jan 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
12
22
0
24 Nov 2021
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
  Viewpoint
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
13
36
0
23 Sep 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
59
31
0
11 Jan 2021
1