Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.05152
Cited By
On Explainability of Graph Neural Networks via Subgraph Explorations
9 February 2021
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Explainability of Graph Neural Networks via Subgraph Explorations"
50 / 65 papers shown
Title
Generating Skyline Explanations for Graph Neural Networks
Dazhuo Qiu
Haolai Che
Arijit Khan
Yinghui Wu
38
0
0
12 May 2025
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Kirill Lukyanov
Mikhail Drobyshevskiy
Georgii Sazonov
Mikhail Soloviov
Ilya Makarov
GNN
46
0
0
06 May 2025
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
143
0
0
05 May 2025
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
J. Qu
Wenhan Gao
Jiaxing Zhang
Xufeng Liu
Hua Wei
Haibin Ling
Y. Liu
AI4CE
52
0
0
04 May 2025
Dual Explanations via Subgraph Matching for Malware Detection
Hossein Shokouhinejad
Roozbeh Razavi-Far
Griffin Higgins
Ali Ghorbani
AAML
36
0
0
29 Apr 2025
On the Consistency of GNN Explanations for Malware Detection
Hossein Shokouhinejad
Griffin Higgins
Roozbeh Razavi-Far
Hesamodin Mohammadian
Ali Ghorbani
17
1
0
22 Apr 2025
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
47
0
0
19 Mar 2025
Discovering Influential Neuron Path in Vision Transformers
Yifan Wang
Yifei Liu
Yingdong Shi
C. Li
Anqi Pang
Sibei Yang
Jingyi Yu
Kan Ren
ViT
69
0
0
12 Mar 2025
Virtual Nodes Can Help: Tackling Distribution Shifts in Federated Graph Learning
Xingbo Fu
Zihan Chen
Yinhan He
Song Wang
Binchi Zhang
Chen Chen
Jundong Li
OOD
FedML
61
1
0
24 Feb 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning
Wei Qiao
Yebo Feng
Teng Li
Zijian Zhang
Zhengzi Xu
Zhuo Ma
Yulong Shen
32
0
0
23 Oct 2024
Explaining Graph Neural Networks for Node Similarity on Graphs
Daniel Daza
C. Chu
T. Tran
Daria Stepanova
Michael Cochez
Paul T. Groth
30
1
0
10 Jul 2024
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
38
0
0
10 Jun 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
42
3
0
21 May 2024
A Differential Geometric View and Explainability of GNN on Evolving Graphs
Yazheng Liu
Xi Zhang
Sihong Xie
19
3
0
11 Mar 2024
Incorporating Retrieval-based Causal Learning with Information Bottlenecks for Interpretable Graph Neural Networks
Jiahua Rao
Jiancong Xie
Hanjing Lin
Shuangjia Zheng
Zhen Wang
Yuedong Yang
19
0
0
07 Feb 2024
Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks
Zhuomin Chen
Jiaxing Zhang
Jingchao Ni
Xiaoting Li
Yuchen Bian
Md. Mezbahul Islam
A. Mondal
Hua Wei
Dongsheng Luo
16
1
0
03 Feb 2024
Use of Graph Neural Networks in Aiding Defensive Cyber Operations
Shaswata Mitra
Trisha Chakraborty
Subash Neupane
Aritran Piplai
Sudip Mittal
AAML
42
3
0
11 Jan 2024
SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation
Ming-Yi Hong
Yi-Hsiang Huang
Shao-En Lin
You-Chen Teng
Chih-Yu Wang
Che Lin
35
0
0
07 Jan 2024
Towards Fine-Grained Explainability for Heterogeneous Graph Neural Network
Tong Li
Jiale Deng
Yanyan Shen
Luyu Qiu
Hu Yongxiang
Caleb Chen Cao
23
5
0
23 Dec 2023
Generating Explanations to Understand and Repair Embedding-based Entity Alignment
Xiaobin Tian
Zequn Sun
Wei Hu
24
5
0
08 Dec 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
39
4
0
30 Oct 2023
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
34
6
0
25 May 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
23
22
0
22 May 2023
Self-Explainable Graph Neural Networks for Link Prediction
Huaisheng Zhu
Dongsheng Luo
Xianfeng Tang
Junjie Xu
Hui Liu
Suhang Wang
16
1
0
21 May 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
18
1
0
25 Apr 2023
A Survey on Malware Detection with Graph Representation Learning
Tristan Bilot
Nour El Madhoun
Khaldoun Al Agha
Anis Zouaoui
AAML
13
20
0
28 Mar 2023
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis
Haoyu He
Yuede Ji
H. H. Huang
23
20
0
26 Mar 2023
A Comparison of Graph Neural Networks for Malware Classification
Vrinda Malhotra
Katerina Potika
Mark Stamp
27
3
0
22 Mar 2023
Structural Explanations for Graph Neural Networks using HSIC
Ayato Toyokuni
Makoto Yamada
19
1
0
04 Feb 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
23
31
0
04 Jan 2023
A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective
Yu Zhao
Huaming Du
Qing Li
Fuzhen Zhuang
Ji Liu
Gang Kou
Gang Kou
30
1
0
28 Nov 2022
Fusing Modalities by Multiplexed Graph Neural Networks for Outcome Prediction in Tuberculosis
N. S. D'Souza
Hongzhi Wang
Andrea Giovannini
A. Foncubierta-Rodríguez
Kristen L. Beck
Orest Boyko
T. Syeda-Mahmood
AI4CE
26
8
0
25 Oct 2022
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
25
12
0
05 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
31
7
0
28 Sep 2022
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
38
99
0
19 Aug 2022
ScoreCAM GNN: une explication optimale des réseaux profonds sur graphes
Adrien Raison
Pascal Bourdon
David Helbert
FAtt
GNN
19
0
0
26 Jul 2022
A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics
Yiqiao Li
Jianlong Zhou
Sunny Verma
Fang Chen
XAI
28
39
0
26 Jul 2022
Towards Faithful and Consistent Explanations for Graph Neural Networks
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
FAtt
48
18
0
27 May 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
25
25
0
20 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
Wanyu Lin
Hao Lan
Hao Wang
Baochun Li
BDL
CML
31
50
0
29 Mar 2022
Explainability in Graph Neural Networks: An Experimental Survey
Peibo Li
Yixing Yang
M. Pagnucco
Yang Song
21
31
0
17 Mar 2022
Task-Agnostic Graph Explanations
Yaochen Xie
S. Katariya
Xianfeng Tang
E-Wen Huang
Nikhil S. Rao
Karthik Subbian
Shuiwang Ji
40
25
0
16 Feb 2022
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
16
204
0
11 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
196
0
31 Jan 2022
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
93
223
0
30 Jan 2022
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAtt
CML
17
14
0
21 Jan 2022
Causal Attention for Interpretable and Generalizable Graph Classification
Yongduo Sui
Xiang Wang
Jiancan Wu
Min-Bin Lin
Xiangnan He
Tat-Seng Chua
CML
OOD
17
152
0
30 Dec 2021
Improving Subgraph Recognition with Variational Graph Information Bottleneck
Junchi Yu
Jie Cao
Ran He
22
53
0
18 Dec 2021
1
2
Next