Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07850
Cited By
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
15 February 2021
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentiable Particle Filtering via Entropy-Regularized Optimal Transport"
46 / 46 papers shown
Title
DnD Filter: Differentiable State Estimation for Dynamic Systems using Diffusion Models
Ziyu Wan
Lin Zhao
DiffM
63
0
0
03 Mar 2025
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Ali Younis
Erik B. Sudderth
AI4TS
33
0
0
14 Feb 2025
GraphGrad: Efficient Estimation of Sparse Polynomial Representations for General State-Space Models
Benjamin Cox
Émilie Chouzenoux
Victor Elvira
64
0
0
23 Nov 2024
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Benjamin Cox
Santiago Segarra
Victor Elvira
61
0
0
23 Nov 2024
Permutation Invariant Learning with High-Dimensional Particle Filters
Akhilan Boopathy
Aneesh Muppidi
Peggy Yang
Abhiram Iyer
William Yue
Ila R Fiete
SSL
36
0
0
30 Oct 2024
Enhanced SMC
2
^2
2
: Leveraging Gradient Information from Differentiable Particle Filters Within Langevin Proposals
Conor Rosato
Joshua Murphy
Alessandro Varsi
P. Horridge
Simon Maskell
21
4
0
24 Jul 2024
Differentiable Cost-Parameterized Monge Map Estimators
Samuel Howard
George Deligiannidis
Patrick Rebeschini
James Thornton
OT
31
1
0
12 Jun 2024
Regime Learning for Differentiable Particle Filters
John-Joseph Brady
Yuhui Luo
Wenwu Wang
Victor Elvira
Yunpeng Li
16
0
0
08 May 2024
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
22
1
0
02 May 2024
Resampling-free Particle Filters in High-dimensions
Akhilan Boopathy
Aneesh Muppidi
Peggy Yang
Abhiram Iyer
William Yue
Ila Fiete
23
2
0
21 Apr 2024
Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes
Ali Younis
Erik B. Sudderth
26
4
0
12 Apr 2024
Optimal State Estimation in the Presence of Non-Gaussian Uncertainty via Wasserstein Distance Minimization
Himanshu Prabhat
Raktim Bhattacharya
15
1
0
06 Mar 2024
Differentiable Particle Filtering using Optimal Placement Resampling
Domonkos Csuzdi
Olivér Törő
Tamás Bécsi
19
0
0
26 Feb 2024
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing
Hany Abdulsamad
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
33
2
0
21 Dec 2023
Learning Differentiable Particle Filter on the Fly
Jiaxi Li
Xiongjie Chen
Yunpeng Li
13
1
0
10 Dec 2023
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schon
Jens Sjölund
17
0
0
30 Oct 2023
Enhancing State Estimation in Robots: A Data-Driven Approach with Differentiable Ensemble Kalman Filters
Xinyu Liu
Geoffrey Clark
Joseph Campbell
Yifan Zhou
H. B. Amor
21
10
0
19 Aug 2023
Extending Path-Dependent NJ-ODEs to Noisy Observations and a Dependent Observation Framework
William Andersson
Jakob Heiss
Florian Krach
Josef Teichmann
17
2
0
24 Jul 2023
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
17
7
0
06 Jul 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
27
3
0
27 Apr 2023
Stochastic filtering with moment representation
Zheng Zhao
Juha Sarmavuori
14
0
0
24 Mar 2023
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Wenhan Li
Xiongjie Chen
Wenwu Wang
Victor Elvira
Yunpeng Li
19
6
0
20 Feb 2023
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
12
14
0
19 Feb 2023
Unsupervised Learning of Sampling Distributions for Particle Filters
Fernando Gama
Nicolas Zilberstein
Martín Sevilla
Richard Baraniuk
Santiago Segarra
30
9
0
02 Feb 2023
Transport with Support: Data-Conditional Diffusion Bridges
Ella Tamir
Martin Trapp
Arno Solin
DiffM
OT
23
7
0
31 Jan 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
26
8
0
27 Jan 2023
Sequential Bayesian Learning for Hidden Semi-Markov Models
Patrick Aschermayr
K. Kalogeropoulos
11
0
0
25 Jan 2023
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
31
2
0
14 Dec 2022
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
16
33
0
16 Oct 2022
Rethinking Initialization of the Sinkhorn Algorithm
James Thornton
Marco Cuturi
OT
13
10
0
15 Jun 2022
Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow
Xiongjie Chen
Yunpeng Li
13
6
0
16 Mar 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
11
7
0
04 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
17
46
0
31 Jan 2022
The Coupled Rejection Sampler
Adrien Corenflos
Simo Särkkä
17
4
0
24 Jan 2022
Compositional Learning-based Planning for Vision POMDPs
Sampada Deglurkar
M. H. Lim
Johnathan Tucker
Zachary Sunberg
Aleksandra Faust
Claire Tomlin
25
4
0
17 Dec 2021
Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
8
14
0
02 Nov 2021
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
20
21
0
26 Oct 2021
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
21
9
0
30 Sep 2021
Quantitative Uniform Stability of the Iterative Proportional Fitting Procedure
George Deligiannidis
Valentin De Bortoli
Arnaud Doucet
11
24
0
18 Aug 2021
Auto-differentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
29
33
0
16 Jul 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
13
20
0
01 Jul 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank D. Wood
10
19
0
18 Jun 2021
Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation
Peter Karkus
Shaojun Cai
David Hsu
9
65
0
17 May 2021
How to Train Your Differentiable Filter
Alina Kloss
Georg Martius
Jeannette Bohg
26
46
0
28 Dec 2020
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
50
65
0
23 Jul 2020
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
41
45
0
19 Jul 2016
1